ProjectQ: an open source software framework for quantum computing

Damian S. Steiger, Thomas Häner, and Matthias Troyer

Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We introduce ProjectQ, an open source software effort for quantum computing. The first release features a compiler framework capable of targeting various types of hardware, a high-performance simulator with emulation capabilities, and compiler plug-ins for circuit drawing and resource estimation. We introduce our Python-embedded domain-specific language, present the features, and provide example implementations for quantum algorithms. The framework allows testing of quantum algorithms through simulation and enables running them on actual quantum hardware using a back-end connecting to the IBM Quantum Experience cloud service. Through extension mechanisms, users can provide back-ends to further quantum hardware, and scientists working on quantum compilation can provide plug-ins for additional compilation, optimization, gate synthesis, and layout strategies.

► BibTeX data

► References

[1] IBM Quantum Experience. http:/​/​research.ibm.com/​quantum/​.
http:/​/​research.ibm.com/​quantum/​

[2] Thomas Häner, Damian S. Steiger, Krysta Svore, and Matthias Troyer. A software methodology for compiling quantum programs. Quantum Science and Technology, 2018. https:/​/​doi.org/​10.1088/​2058-9565/​aaa5cc.
https:/​/​doi.org/​10.1088/​2058-9565/​aaa5cc

[3] pybind. https:/​/​github.com/​pybind.
https:/​/​github.com/​pybind

[4] Thomas Häner, Damian S. Steiger, Mikhail Smelyanskiy, and Matthias Troyer. High performance emulation of quantum circuits. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '16, pages 74:1–74:9, Piscataway, NJ, USA, 2016. IEEE Press. ISBN 978-1-4673-8815-3. 10.1109/​SC.2016.73.
https:/​/​doi.org/​10.1109/​SC.2016.73

[5] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoit Valiron. Quipper: a scalable quantum programming language. In ACM SIGPLAN Notices, volume 48, pages 333–342. ACM, 2013. 10.1145/​2499370.2462177.
https:/​/​doi.org/​10.1145/​2499370.2462177

[6] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi. Scaffcc: a framework for compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM Conference on Computing Frontiers, page 1. ACM, 2014. 10.1145/​2597917.2597939.
https:/​/​doi.org/​10.1145/​2597917.2597939

[7] Dave Wecker and Krysta M. Svore. LIQ$Ui|>$: A software design architecture and domain-specific language for quantum computing. arXiv preprint arXiv:1402.4467, 2014.
arXiv:1402.4467

[8] ProjectQ website. www.projectq.ch.
http:/​/​www.projectq.ch

[9] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages 124–134. IEEE, 1994. 10.1109/​SFCS.1994.365700.
https:/​/​doi.org/​10.1109/​SFCS.1994.365700

[10] Stephane Beauregard. Circuit for shor's algorithm using 2n+ 3 qubits. Quantum Information and Computation, 3 (2): 175–185, 2003.

[11] Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. Quantum addition circuits and unbounded fan-out. Quantum Information and Computation, 10 (9&10): 0872–0890, 2010.

[12] Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring using 2n+2 qubits with Toffoli based modular multiplication. Quantum Information and Computation, 17 (7&8): 0673–0684, 2017. 10.26421/​QIC17.7-8.
https:/​/​doi.org/​10.26421/​QIC17.7-8

[13] Thomas G. Draper. Addition on a quantum computer. arXiv preprint quant-ph/​0008033, 2000.
arXiv:quant-ph/0008033

[14] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Physical Review A, 52 (5): 3457, 1995. 10.1103/​PhysRevA.52.3457.
https:/​/​doi.org/​10.1103/​PhysRevA.52.3457

[15] Anders Sørensen and Klaus Mølmer. Quantum computation with ions in thermal motion. Physical Review Letters, 82 (9): 1971, 1999. 10.1103/​PhysRevLett.82.1971.
https:/​/​doi.org/​10.1103/​PhysRevLett.82.1971

[16] Ryan Babbush, Dominic W. Berry, Ian D. Kivlichan, Annie Y. Wei, Peter J. Love, and Alán Aspuru-Guzik. Exponentially more precise quantum simulation of fermions in second quantization. New Journal of Physics, 18 (3): 033032, 2016. 10.1088/​1367-2630/​18/​3/​033032.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​3/​033032

[17] Fermilib. https:/​/​github.com/​projectq-framework/​fermilib.
https:/​/​github.com/​projectq-framework/​fermilib

[18] Ludwig E. de Clercq, Hsiang-Yu Lo, Matteo Marinelli, David Nadlinger, Robin Oswald, Vlad Negnevitsky, Daniel Kienzler, Ben Keitch, and Jonathan P. Home. Parallel transport quantum logic gates with trapped ions. Physical Review Letters, 116 (8): 080502, 2016. 10.1103/​PhysRevLett.116.080502.
https:/​/​doi.org/​10.1103/​PhysRevLett.116.080502

[19] Thomas Häner and Damian S. Steiger. 0.5 petabyte simulation of a 45-qubit quantum circuit. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '17, pages 33:1–33:10, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5114-0. 10.1145/​3126908.3126947.
https:/​/​doi.org/​10.1145/​3126908.3126947

[20] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM Symposium on Theory of Computing, pages 212–219. ACM, 1996. 10.1145/​237814.237866.
https:/​/​doi.org/​10.1145/​237814.237866

Cited by

[1] Zhiqian Xu, Honghui Shang, Yi Fan, Xiongzhi Zeng, Yunquan Zhang, and Chu Guo, 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 230 (2024) ISBN:979-8-3503-8711-7.

[2] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown, T. M. Gatterman, S. K. Halit, K. Gilmore, J. A. Gerber, B. Neyenhuis, D. Hayes, and R. P. Stutz, "Realization of Real-Time Fault-Tolerant Quantum Error Correction", Physical Review X 11 4, 041058 (2021).

[3] Giovanni Di Bartolomeo, Michele Vischi, Francesco Cesa, Roman Wixinger, Michele Grossi, Sandro Donadi, and Angelo Bassi, "Noisy gates for simulating quantum computers", Physical Review Research 5 4, 043210 (2023).

[4] Chansreynich Huot, Kimleang Kea, Tae-Kyung Kim, and Youngsun Han, "Enhancing Knapsack-Based Financial Portfolio Optimization Using Quantum Approximate Optimization Algorithm", IEEE Access 12, 183779 (2024).

[5] Gian Giacomo Guerreschi and Jongsoo Park, "Two-step approach to scheduling quantum circuits", Quantum Science and Technology 3 4, 045003 (2018).

[6] Harrison Ball, Michael J Biercuk, Andre R R Carvalho, Jiayin Chen, Michael Hush, Leonardo A De Castro, Li Li, Per J Liebermann, Harry J Slatyer, Claire Edmunds, Virginia Frey, Cornelius Hempel, and Alistair Milne, "Software tools for quantum control: improving quantum computer performance through noise and error suppression", Quantum Science and Technology 6 4, 044011 (2021).

[7] T. L. M. Guedes, D. Winter, and M. Müller, "Quantum Cellular Automata for Quantum Error Correction and Density Classification", Physical Review Letters 133 15, 150601 (2024).

[8] Bettina Heim, Mathias Soeken, Sarah Marshall, Chris Granade, Martin Roetteler, Alan Geller, Matthias Troyer, and Krysta Svore, "Quantum programming languages", Nature Reviews Physics 2 12, 709 (2020).

[9] Tim Coopmans, Robert Knegjens, Axel Dahlberg, David Maier, Loek Nijsten, Julio de Oliveira Filho, Martijn Papendrecht, Julian Rabbie, Filip Rozpędek, Matthew Skrzypczyk, Leon Wubben, Walter de Jong, Damian Podareanu, Ariana Torres-Knoop, David Elkouss, and Stephanie Wehner, "NetSquid, a NETwork Simulator for QUantum Information using Discrete events", Communications Physics 4 1, 164 (2021).

[10] Abdulah Fawaz, Paul Klein, Sebastien Piat, Simone Severini, and Peter Mountney, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 1674 (2019) ISBN:9781450362016.

[11] Arnaud Gazda and Océane Koska, "A pragma based C++ framework for hybrid quantum/classical computation", Science of Computer Programming 236, 103119 (2024).

[12] Pengzhan Zhao, Zhongtao Miao, Shuhan Lan, and Jianjun Zhao, "Bugs4Q: A benchmark of existing bugs to enable controlled testing and debugging studies for quantum programs", Journal of Systems and Software 205, 111805 (2023).

[13] Seong-Min Cho and Seung-Hyun Seo, "Quantum rectangular MinRank attack on multi-layer UOV signature schemes", Scientific Reports 14 1, 16340 (2024).

[14] Matthew Amy, Lecture Notes in Computer Science 11497, 87 (2019) ISBN:978-3-030-21499-9.

[15] Charles Yuan and Michael Carbin, "The T-Complexity Costs of Error Correction for Control Flow in Quantum Computation", Proceedings of the ACM on Programming Languages 8 PLDI, 492 (2024).

[16] Amit Jamadagni Gangapuram, Andreas Läuchli, and Cornelius Hempel, "Benchmarking quantum computer simulation software packages: State vector simulators", SciPost Physics Core 7 4, 075 (2024).

[17] Gushu Li, Yufei Ding, and Yuan Xie, 2020 57th ACM/IEEE Design Automation Conference (DAC) 1 (2020) ISBN:978-1-7281-1085-1.

[18] Gyeongju Song, Siwoo Eum, Hyeokdong Kwon, Minjoo Sim, Minwoo Lee, and Hwajeong Seo, "Optimized Quantum Circuit for Quantum Security Strength Analysis of Argon2", Electronics 12 21, 4485 (2023).

[19] Masaya Norimoto, Taku Mikuriya, and Naoki Ishikawa, "Quantum Speedup for Multiuser Detection With Optimized Parameters in Grover Adaptive Search", IEEE Access 12, 83810 (2024).

[20] Matthew Amy and Vlad Gheorghiu, "staq—A full-stack quantum processing toolkit", Quantum Science and Technology 5 3, 034016 (2020).

[21] Jakob S Kottmann, Sumner Alperin-Lea, Teresa Tamayo-Mendoza, Alba Cervera-Lierta, Cyrille Lavigne, Tzu-Ching Yen, Vladyslav Verteletskyi, Philipp Schleich, Abhinav Anand, Matthias Degroote, Skylar Chaney, Maha Kesibi, Naomi Grace Curnow, Brandon Solo, Georgios Tsilimigkounakis, Claudia Zendejas-Morales, Artur F Izmaylov, and Alán Aspuru-Guzik, "TEQUILA: a platform for rapid development of quantum algorithms", Quantum Science and Technology 6 2, 024009 (2021).

[22] Haodong Bian, Jianqiang Huang, Jiahao Tang, Runting Dong, Li Wu, and Xiaoying Wang, "PAS: A new powerful and simple quantum computing simulator", Software: Practice and Experience 53 1, 142 (2023).

[23] Anderson Avila, Helida Santos, Anderson Cruz, Samuel Xavier-de-Souza, Giancarlo Lucca, Bruno Moura, Adenauer Yamin, and Renata Reiser, "HybriD-GM: A Framework for Quantum Computing Simulation Targeted to Hybrid Parallel Architectures", Entropy 25 3, 503 (2023).

[24] Hoa T. Nguyen, Muhammad Usman, and Rajkumar Buyya, "iQuantum: A toolkit for modeling and simulation of quantum computing environments", Software: Practice and Experience 54 6, 1141 (2024).

[25] Daniel Vietz, Johanna Barzen, Frank Leymann, and Karoline Wild, Lecture Notes in Computer Science 12747, 127 (2021) ISBN:978-3-030-77979-5.

[26] Kesha Hietala, Robert Rand, Liyi Li, Shih-Han Hung, Xiaodi Wu, and Michael Hicks, "A Verified Optimizer for Quantum Circuits", ACM Transactions on Programming Languages and Systems 45 3, 1 (2023).

[27] Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron, Lecture Notes in Computer Science 12648, 148 (2021) ISBN:978-3-030-72018-6.

[28] Pedro Parrado-Rodríguez, Ciarán Ryan-Anderson, Alejandro Bermudez, and Markus Müller, "Crosstalk Suppression for Fault-tolerant Quantum Error Correction with Trapped Ions", Quantum 5, 487 (2021).

[29] Marc Illa, Caroline E. P. Robin, and Martin J. Savage, "Quantum simulations of SO(5) many-fermion systems using qudits", Physical Review C 108 6, 064306 (2023).

[30] Will Powell, Jason Riedy, Jeffrey S. Young, and Thomas M. Conte, Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) 1 (2019) ISBN:9781450372275.

[31] Manuel A. Serrano, José A. Cruz-Lemus, Ricardo Perez-Castillo, and Mario Piattini, "Quantum Software Components and Platforms: Overview and Quality Assessment", ACM Computing Surveys 55 8, 1 (2023).

[32] Robert Wille, Austin Fowler, and Yehuda Naveh, Proceedings of the International Conference on Computer-Aided Design 1 (2018) ISBN:9781450359504.

[33] Antonio D. Corcoles, Abhinav Kandala, Ali Javadi-Abhari, Douglas T. McClure, Andrew W. Cross, Kristan Temme, Paul D. Nation, Matthias Steffen, and Jay M. Gambetta, "Challenges and Opportunities of Near-Term Quantum Computing Systems", Proceedings of the IEEE 108 8, 1338 (2020).

[34] Chris Cade, Marten Folkertsma, Ido Niesen, and Jordi Weggemans, "Quantifying Grover speed-ups beyond asymptotic analysis", Quantum 7, 1133 (2023).

[35] Giulia Meuli, Mathias Soeken, Martin Roetteler, and Thomas Häner, "Enabling accuracy-aware Quantum compilers using symbolic resource estimation", Proceedings of the ACM on Programming Languages 4 OOPSLA, 1 (2020).

[36] Huan-Yu Ku, Neill Lambert, Feng-Jui Chan, Clive Emary, Yueh-Nan Chen, and Franco Nori, "Experimental test of non-macrorealistic cat states in the cloud", npj Quantum Information 6 1, 98 (2020).

[37] Yu Zhang, Haowei Deng, Quanxi Li, Haoze Song, and Leihai Nie, 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE) 184 (2019) ISBN:978-1-7281-3342-3.

[38] Marie Salm, Johanna Barzen, Uwe Breitenbücher, Frank Leymann, Benjamin Weder, and Karoline Wild, Communications in Computer and Information Science 1310, 66 (2020) ISBN:978-3-030-64845-9.

[39] Marcello Caleffi, Michele Amoretti, Davide Ferrari, Jessica Illiano, Antonio Manzalini, and Angela Sara Cacciapuoti, "Distributed quantum computing: A survey", Computer Networks 254, 110672 (2024).

[40] Suryansh Upadhyay, Mahabubul Alam, and Swaroop Ghosh, Handbook of Computer Architecture 723 (2025) ISBN:978-981-97-9313-6.

[41] Jayesh Hire, Vaidehi Gawande, and Sagar Dhande, "Quantum-Accelerated Flight Selection: Probing Grover's Algorithm and Quantum Device Efficiency", International Journal of Innovative Science and Research Technology (IJISRT) 1255 (2024).

[42] Lukas Burgholzer, Rudy Raymond, Indranil Sengupta, and Robert Wille, Lecture Notes in Computer Science 12805, 227 (2021) ISBN:978-3-030-79836-9.

[43] Tian-Yin Li, Hong-Xi Xing, and Dan-Bo Zhang, "Quantum computing based high-energy nuclear physics", Acta Physica Sinica 72 20, 200303 (2023).

[44] Anderson Avila, Renata Hax Sander Reiser, Maurício Lima Pilla, and Adenauer Correa Yamin, "Improving in situ GPU simulation of quantum computing in the D-GM environment", The International Journal of High Performance Computing Applications 33 3, 462 (2019).

[45] Gian Giacomo Guerreschi, "Fast simulation of quantum algorithms using circuit optimization", Quantum 6, 706 (2022).

[46] Felix Gemeinhardt, Antonio Garmendia, Manuel Wimmer, and Robert Wille, "A Model-Driven Framework for Composition-Based Quantum Circuit Design", ACM Transactions on Quantum Computing 5 4, 1 (2024).

[47] Yi-Te Huang, Jhen-Dong Lin, Huan-Yu Ku, and Yueh-Nan Chen, "Benchmarking quantum state transfer on quantum devices", Physical Review Research 3 2, 023038 (2021).

[48] Kai Chen, "Comparison of the Quantum and Conventional Algorithms: Evidence from Genetic Algorithm and Ant Colony Algorithm", Highlights in Science, Engineering and Technology 38, 508 (2023).

[49] Peter Nimbe, Benjamin Asubam Weyori, and Adebayo Felix Adekoya, "Models in quantum computing: a systematic review", Quantum Information Processing 20 2, 80 (2021).

[50] Shuang Liang, Yuncheng Lu, Ce Guo, Wayne Luk, and Paul H. J. Kelly, 2024 IEEE 32nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) 24 (2024) ISBN:979-8-3503-7243-4.

[51] Zi-Jian Zhang, Thi Ha Kyaw, Jakob S Kottmann, Matthias Degroote, and Alán Aspuru-Guzik, "Mutual information-assisted adaptive variational quantum eigensolver", Quantum Science and Technology 6 3, 035001 (2021).

[52] Manuel A. Serrano, Luis E. Sánchez, Antonio Santos-Olmo, David García-Rosado, Carlos Blanco, Vita Santa Barletta, Danilo Caivano, and Eduardo Fernández-Medina, "Minimizing incident response time in real-world scenarios using quantum computing", Software Quality Journal 32 1, 163 (2024).

[53] Francisco Orts, Gloria Ortega, Elías F. Combarro, Ignacio F. Rúa, Antonio M. Puertas, and Ester M. Garzón, "Efficient design of a quantum absolute-value circuit using Clifford+T gates", (2022).

[54] Synthesis Lectures on Computer Architecture (2020) ISBN:978-3-031-00637-1.

[55] Gyeongju Song and Hwajeong Seo, "Grover on Scrypt", Electronics 13 16, 3167 (2024).

[56] Neil J. Ross, "The dawn of quantum programming", Quantum Views 2, 4 (2018).

[57] Essam H. Houssein, Zainab Abohashima, Mohamed Elhoseny, and Waleed M. Mohamed, "Machine learning in the quantum realm: The state-of-the-art, challenges, and future vision", Expert Systems with Applications 194, 116512 (2022).

[58] Kiran Mehta and Renuka Sharma, Deep Learning Tools for Predicting Stock Market Movements 39 (2024) ISBN:9781394214303.

[59] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang, "QASMBench: A Low-Level Quantum Benchmark Suite for NISQ Evaluation and Simulation", ACM Transactions on Quantum Computing 4 2, 1 (2023).

[60] Erik Nielsen, Kenneth Rudinger, Timothy Proctor, Antonio Russo, Kevin Young, and Robin Blume-Kohout, "Probing quantum processor performance with pyGSTi", Quantum Science and Technology 5 4, 044002 (2020).

[61] José A. Cruz-Lemus and Manuel A. Serrano, Quantum Software Engineering 229 (2022) ISBN:978-3-031-05323-8.

[62] Francesco Di Marcantonio, Massimiliano Incudini, Davide Tezza, and Michele Grossi, "Quantum Advantage Seeker with Kernels (QuASK): a software framework to speed up the research in quantum machine learning", Quantum Machine Intelligence 5 1, 20 (2023).

[63] Philipp Niemann, Alwin Zulehner, Rolf Drechsler, and Robert Wille, "Overcoming the Tradeoff Between Accuracy and Compactness in Decision Diagrams for Quantum Computation", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 12, 4657 (2020).

[64] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev, Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation 286 (2020) ISBN:9781450376136.

[65] Huo Chen and Daniel A. Lidar, "Hamiltonian open quantum system toolkit", Communications Physics 5 1, 112 (2022).

[66] Emanuel Colella, Spencer Beloin, Luca Bastianelli, Valter Mariani Primiani, Franco Moglie, and Gabriele Gradoni, "Variational Quantum Shot-Based Simulations for Waveguide Modes", IEEE Transactions on Microwave Theory and Techniques 72 4, 2084 (2024).

[67] Tridiv Swain, Sushruta Mishra, Deepak Gupta, and Ahmed Alkhayyat, Lecture Notes in Networks and Systems 537, 411 (2023) ISBN:978-981-99-3009-8.

[68] Fang Li, Xin Liu, Yong Liu, Pengpeng Zhao, Yuling Yang, Honghui Shang, Weizhe Sun, Zhen Wang, Enming Dong, and Dexun Chen, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis 1 (2021) ISBN:9781450384421.

[69] Yanjun Ji, Sebastian Brandhofer, and Ilia Polian, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 204 (2022) ISBN:978-1-6654-9113-6.

[70] Stefan Hillmich, Alwin Zulehner, and Robert Wille, 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC) 115 (2020) ISBN:978-1-7281-4123-7.

[71] Salonik Resch and Ulya R. Karpuzcu, "Benchmarking Quantum Computers and the Impact of Quantum Noise", ACM Computing Surveys 54 7, 1 (2022).

[72] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks, "A verified optimizer for Quantum circuits", Proceedings of the ACM on Programming Languages 5 POPL, 1 (2021).

[73] Kyungbae Jang, Gyeongju Song, Hyunjun Kim, Hyeokdong Kwon, Hyunji Kim, and Hwajeong Seo, "Efficient Implementation of PRESENT and GIFT on Quantum Computers", Applied Sciences 11 11, 4776 (2021).

[74] Jinyoung Ha, Jonghyun Lee, and Jun Heo, "Resource analysis and modifications of quantum computing with noisy qubits for elliptic curve discrete logarithms", Scientific Reports 14 1, 3927 (2024).

[75] Nicholas H. Stair and Francesco A. Evangelista, "QForte: An Efficient State-Vector Emulator and Quantum Algorithms Library for Molecular Electronic Structure", Journal of Chemical Theory and Computation 18 3, 1555 (2022).

[76] Kyungbae Jang, Yujin Oh, and Hwajeong Seo, "Depth-Optimized Quantum Circuit of Gauss–Jordan Elimination", Applied Sciences 14 19, 8579 (2024).

[77] Yu-Cheng Lin, Chuan-Chi Wang, Chia-Heng Tu, and Shih-Hao Hung, Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing 1487 (2024) ISBN:9798400702433.

[78] Renke Huang, Chenyang Li, and Francesco A. Evangelista, "Leveraging Small-Scale Quantum Computers with Unitarily Downfolded Hamiltonians", PRX Quantum 4 2, 020313 (2023).

[79] S Vigneshwaran, P Vignesh, R. Anuradha, and N. Sathishkumar, 2023 International Conference on Quantum Technologies, Communications, Computing, Hardware and Embedded Systems Security (iQ-CCHESS) 1 (2023) ISBN:979-8-3503-1494-6.

[80] Prakash Murali, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi, "Formal constraint-based compilation for noisy intermediate-scale quantum systems", Microprocessors and Microsystems 66, 102 (2019).

[81] Augustin Borgna and Rafael Romero, "Encoding High-level Quantum Programs as SZX-diagrams", Electronic Proceedings in Theoretical Computer Science 394, 141 (2023).

[82] Mehmet KARAKÖSE, Hasan YETİŞ, Osman Furkan KÜÇÜK, Çağatay Umut ÖĞDÜ, and Orhan YAMAN, "Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi ve IBMQ Uygulaması", Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10 21, 227 (2023).

[83] A. Jiménez-Pastor, K. G. Larsen, M. Tribastone, and M. Tschaikowski, Lecture Notes in Computer Science 14571, 343 (2024) ISBN:978-3-031-57248-7.

[84] Gyeongju Song, Kyungbae Jang, Hyunji Kim, Wai-Kong Lee, Zhi Hu, and Hwajeong Seo, Lecture Notes in Computer Science 13218, 421 (2022) ISBN:978-3-031-08895-7.

[85] Thomas Grurl, Jurgen Fub, and Robert Wille, 2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL) 87 (2021) ISBN:978-1-7281-9224-6.

[86] Wai-Kong Lee, Kyungbae Jang, Gyeongju Song, Hyunji Kim, Seong Oun Hwang, and Hwajeong Seo, "Efficient Implementation of Lightweight Hash Functions on GPU and Quantum Computers for IoT Applications", IEEE Access 10, 59661 (2022).

[87] Corey Trahan, Mark Loveland, and Samuel Dent, "Quantum Physics-Informed Neural Networks", Entropy 26 8, 649 (2024).

[88] Mostafizar Rahman and Goutam Paul, "Grover on KATAN: Quantum Resource Estimation", IEEE Transactions on Quantum Engineering 3, 1 (2022).

[89] Yuhong Song, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Rui Xu, and Han Wang, "Efficient algorithm for full-state quantum circuit simulation with DD compression while maintaining accuracy", Quantum Information Processing 22 11, 413 (2023).

[90] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", Chemical Reviews 119 19, 10856 (2019).

[91] Jingzhe Guo and Mingsheng Ying, "Software Pipelining for Quantum Loop Programs", IEEE Transactions on Software Engineering 49 4, 2815 (2023).

[92] Robert Wille, Rod Van Meter, and Yehuda Naveh, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1234 (2019) ISBN:978-3-9819263-2-3.

[93] Barbora Hrdá and Sascha Wessel, Proceedings of the 18th International Conference on Availability, Reliability and Security 1 (2023) ISBN:9798400707728.

[94] Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley, "Quantum computational finance: Monte Carlo pricing of financial derivatives", Physical Review A 98 2, 022321 (2018).

[95] Jin-Guo Liu and Lei Wang, "Differentiable learning of quantum circuit Born machines", Physical Review A 98 6, 062324 (2018).

[96] Jingzhe Guo, Huazhe Lou, Jintao Yu, Riling Li, Wang Fang, Junyi Liu, Peixun Long, Shenggang Ying, and Mingsheng Ying, "isQ: An Integrated Software Stack for Quantum Programming", IEEE Transactions on Quantum Engineering 4, 1 (2023).

[97] Manuel De Stefano, Fabiano Pecorelli, Dario Di Nucci, Fabio Palomba, and Andrea De Lucia, "Software engineering for quantum programming: How far are we?", Journal of Systems and Software 190, 111326 (2022).

[98] Dhaval Mehta, Amol Ranadive, Jigna B. Prajapati, and Rajiv Pandey, Studies in Computational Intelligence 1085, 311 (2023) ISBN:978-981-19-9529-3.

[99] Thomas Grurl, Jurgen Fus, and Robert Wille, "Noise-Aware Quantum Circuit Simulation With Decision Diagrams", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42 3, 860 (2023).

[100] Khaled Khalfaoui, El Hillali Kerkouche, Tahar Boudjedaa, and Allaoua Chaoui, "Optimized exploration of quantum circuits space based on sub-circuits equivalences", Quantum Information Processing 22 1, 71 (2023).

[101] Mark Fingerhuth, Tomáš Babej, Peter Wittek, and Leonie Anna Mueck, "Open source software in quantum computing", PLOS ONE 13 12, e0208561 (2018).

[102] Alwin Zulehner, Philipp Niemann, Rolf Drechsler, and Robert Wille, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) 280 (2019) ISBN:978-3-9819263-2-3.

[103] Matthias Möller and Merel Schalkers, Lecture Notes in Computer Science 12142, 451 (2020) ISBN:978-3-030-50432-8.

[104] M. P. Madhu and Sunanda Dixit, Lecture Notes on Data Engineering and Communications Technologies 44, 714 (2020) ISBN:978-3-030-37050-3.

[105] David Wierichs, Christian Gogolin, and Michael Kastoryano, "Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer", Physical Review Research 2 4, 043246 (2020).

[106] Hai-Ling Liu, Yu-Sen Wu, Lin-Chun Wan, Shi-Jie Pan, Su-Juan Qin, Fei Gao, and Qiao-Yan Wen, "Variational quantum algorithm for the Poisson equation", Physical Review A 104 2, 022418 (2021).

[107] Yukio Kawashima, Erika Lloyd, Marc P. Coons, Yunseong Nam, Shunji Matsuura, Alejandro J. Garza, Sonika Johri, Lee Huntington, Valentin Senicourt, Andrii O. Maksymov, Jason H. V. Nguyen, Jungsang Kim, Nima Alidoust, Arman Zaribafiyan, and Takeshi Yamazaki, "Optimizing electronic structure simulations on a trapped-ion quantum computer using problem decomposition", Communications Physics 4 1, 245 (2021).

[108] Prakash Verma, Lee Huntington, Marc P. Coons, Yukio Kawashima, Takeshi Yamazaki, and Arman Zaribafiyan, "Scaling up electronic structure calculations on quantum computers: The frozen natural orbital based method of increments", The Journal of Chemical Physics 155 3, 034110 (2021).

[109] Krishanu Sankar, Artur Scherer, Satoshi Kako, Sam Reifenstein, Navid Ghadermarzy, Willem B. Krayenhoff, Yoshitaka Inui, Edwin Ng, Tatsuhiro Onodera, Pooya Ronagh, and Yoshihisa Yamamoto, "A benchmarking study of quantum algorithms for combinatorial optimization", npj Quantum Information 10 1, 64 (2024).

[110] Alexander McCaskey, Eugene Dumitrescu, Dmitry Liakh, and Travis Humble, 2018 IEEE International Conference on Rebooting Computing (ICRC) 1 (2018) ISBN:978-1-5386-9170-0.

[111] Vikas Hassija, Vinay Chamola, Vikas Saxena, Vaibhav Chanana, Prakhar Parashari, Shahid Mumtaz, and Mohsen Guizani, "Present landscape of quantum computing", IET Quantum Communication 1 2, 42 (2020).

[112] Samuel Jaques and Thomas Häner, "Leveraging State Sparsity for More Efficient Quantum Simulations", ACM Transactions on Quantum Computing 3 3, 1 (2022).

[113] Yunya Liu, Jiakun Liu, Jordan R. Raney, and Pai Wang, "Quantum computing for solid mechanics and structural engineering – A demonstration with Variational Quantum Eigensolver", Extreme Mechanics Letters 67, 102117 (2024).

[114] Shaun Miller, 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 141 (2020) ISBN:978-1-7281-5775-7.

[115] Vincent Russo, "toqito -- Theory of quantum information toolkit: A Python package for studying quantum information", Journal of Open Source Software 6 61, 3082 (2021).

[116] Róbert Izsák, Christoph Riplinger, Nick S. Blunt, Bernardo de Souza, Nicole Holzmann, Ophelia Crawford, Joan Camps, Frank Neese, and Patrick Schopf, "Quantum computing in pharma: A multilayer embedding approach for near future applications", Journal of Computational Chemistry 44 3, 406 (2023).

[117] Hao Tang, José Leonardo Simancas-García, Jianming Mai, Minghao Cheng, Imran Iqbal, and Lip Yee Por, "Overview of Digital Quantum Simulator: Applications and Comparison with Latest Methods", SPIN 2440004 (2024).

[118] Ilya G. Ryabinkin, Tzu-Ching Yen, Scott N. Genin, and Artur F. Izmaylov, "Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer", Journal of Chemical Theory and Computation 14 12, 6317 (2018).

[119] Oumarou Oumarou, Alexandru Paler, and Robert Basmadjian, 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 126 (2020) ISBN:978-1-7281-5775-7.

[120] Yuan-Hung Tsai, Jie-Hong R. Jiang, and Chiao-Shan Jhang, 2021 58th ACM/IEEE Design Automation Conference (DAC) 439 (2021) ISBN:978-1-6654-3274-0.

[121] Axel Dahlberg, Bart van der Vecht, Carlo Delle Donne, Matthew Skrzypczyk, Ingmar te Raa, Wojciech Kozlowski, and Stephanie Wehner, "NetQASM—a low-level instruction set architecture for hybrid quantum–classical programs in a quantum internet", Quantum Science and Technology 7 3, 035023 (2022).

[122] Yi Fan, Jie Liu, Xiongzhi Zeng, Zhiqian Xu, Honghui Shang, Zhenyu Li, and Jinlong Yang, "Q<sup>2</sup>Chemistry: A quantum computation platform for quantum chemistry", JUSTC 52 12, 2 (2022).

[123] Oscar Higgott, Daochen Wang, and Stephen Brierley, "Variational Quantum Computation of Excited States", Quantum 3, 156 (2019).

[124] Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, Masahiro Nakadai, Jiabao Chen, Ken M. Nakanishi, Kosuke Mitarai, Ryosuke Imai, Shiro Tamiya, Takahiro Yamamoto, Tennin Yan, Toru Kawakubo, Yuya O. Nakagawa, Yohei Ibe, Youyuan Zhang, Hirotsugu Yamashita, Hikaru Yoshimura, Akihiro Hayashi, and Keisuke Fujii, "Qulacs: a fast and versatile quantum circuit simulator for research purpose", Quantum 5, 559 (2021).

[125] Yujin Oh, Kyungbae Jang, Sejin Lim, Yujin Yang, and Hwajeong Seo, 2023 International Conference on Platform Technology and Service (PlatCon) 67 (2023) ISBN:979-8-3503-0599-9.

[126] Quoc Chuong Nguyen, Le Bin Ho, Lan Nguyen Tran, and Hung Q Nguyen, "Qsun: an open-source platform towards practical quantum machine learning applications", Machine Learning: Science and Technology 3 1, 015034 (2022).

[127] Matthew Otten and Stephen K. Gray, "Accounting for errors in quantum algorithms via individual error reduction", npj Quantum Information 5 1, 11 (2019).

[128] Thomas Ayral, François-Marie Le Régent, Zain Saleem, Yuri Alexeev, and Martin Suchara, "Quantum Divide and Compute: Exploring the Effect of Different Noise Sources", SN Computer Science 2 3, 132 (2021).

[129] Ang Li, Omer Subasi, Xiu Yang, and Sriram Krishnamoorthy, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis 1 (2020) ISBN:978-1-7281-9998-6.

[130] Thomas Häner, Damian S. Steiger, Torsten Hoefler, and Matthias Troyer, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis 1 (2021) ISBN:9781450384421.

[131] Kanishk Dwivedi, Majid Haghparast, and Tommi Mikkonen, "Quantum software engineering and quantum software development lifecycle: a survey", Cluster Computing 27 6, 7127 (2024).

[132] Ivan Cvitić, Dragan Peraković, and Josip Vladava, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 542, 3 (2024) ISBN:978-3-031-50050-3.

[133] Aravind Aji, Kurunandan Jain, and Prabhakar Krishnan, 2021 2nd Global Conference for Advancement in Technology (GCAT) 1 (2021) ISBN:978-1-6654-1836-2.

[134] Maria Belkhir, Haroun Benkaouha, and Elhadj Benkhelifa, 2022 Ninth International Conference on Software Defined Systems (SDS) 1 (2022) ISBN:979-8-3503-4671-8.

[135] Davide Ferrari and Michele Amoretti, "Efficient and effective quantum compiling for entanglement-based machine learning on IBM Q devices", International Journal of Quantum Information 16 08, 1840006 (2018).

[136] Yun-Zhuo Fan and Dan-Bo Zhang, "Full counting statistics of particle distribution on a digital quantum computer", Physical Review A 109 1, 012412 (2024).

[137] He-Liang Huang, Xiao-Yue Xu, Chu Guo, Guojing Tian, Shi-Jie Wei, Xiaoming Sun, Wan-Su Bao, and Gui-Lu Long, "Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation", Science China Physics, Mechanics & Astronomy 66 5, 250302 (2023).

[138] Armin Ahmadzadeh and Hamid Sarbazi-Azad, "Fast and scalable quantum computing simulation on multi-core and many-core platforms", Quantum Information Processing 22 5, 215 (2023).

[139] Agustín Borgna, Simon Perdrix, and Benoît Valiron, Lecture Notes in Computer Science 13008, 121 (2021) ISBN:978-3-030-89050-6.

[140] Kyungbae Jang, Wonwoong Kim, Sejin Lim, Yeajun Kang, Yujin Yang, and Hwajeong Seo, Lecture Notes in Computer Science 13720, 251 (2023) ISBN:978-3-031-25658-5.

[141] Stavros Efthymiou, Marco Lazzarin, Andrea Pasquale, and Stefano Carrazza, "Quantum simulation with just-in-time compilation", Quantum 6, 814 (2022).

[142] Kyungbae Jang, Gyeongju Song, Hyunjun Kim, Hyeokdong Kwon, Hyunji Kim, and Hwajeong Seo, "Parallel quantum addition for Korean block ciphers", Quantum Information Processing 21 11, 373 (2022).

[143] Nicholas Meinhardt, Bastiaan Dekker, Niels M. P. Neumann, and Frank Phillipson, "Implementation of a Variational Quantum Circuit for Machine Learning with Compact Data Representation", Digitale Welt 4 1, 95 (2020).

[144] Shubham, Prachi Sajwan, and N. Jayapandian, 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) 598 (2019) ISBN:978-1-7281-4365-1.

[145] Haodong Bian, Jianqiang Huang, Runting Dong, Yuluo Guo, and Xiaoying Wang, Lecture Notes in Computer Science 12453, 111 (2020) ISBN:978-3-030-60238-3.

[146] Kyungbae Jang, Wonwoong Kim, Sejin Lim, Yeajun Kang, Yujin Yang, and Hwajeong Seo, "Quantum Binary Field Multiplication with Optimized Toffoli Depth and Extension to Quantum Inversion", Sensors 23 6, 3156 (2023).

[147] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook, "Strawberry Fields: A Software Platform for Photonic Quantum Computing", Quantum 3, 129 (2019).

[148] David Plankensteiner, Christoph Hotter, and Helmut Ritsch, "QuantumCumulants.jl: A Julia framework for generalized mean-field equations in open quantum systems", Quantum 6, 617 (2022).

[149] Maria Heloísa Fraga da Silva, Gleydson Fernandes de Jesus, and Clebson Cruz, "Effect of Pure Dephasing Quantum Noise in the Quantum Search Algorithm Using Atos Quantum Assembly", Entropy 26 8, 668 (2024).

[150] Michael Kühn, Sebastian Zanker, Peter Deglmann, Michael Marthaler, and Horst Weiß, "Accuracy and Resource Estimations for Quantum Chemistry on a Near-Term Quantum Computer", Journal of Chemical Theory and Computation 15 9, 4764 (2019).

[151] Suryansh Upadhyay, Mahabubul Alam, and Swaroop Ghosh, Handbook of Computer Architecture 1 (2023) ISBN:978-981-15-6401-7.

[152] Taoreed A. Akinola, Xiangfang Li, Richard Wilkins, Pamela H. Obiomon, and Lijun Qian, "Robust Inverse Quantum Fourier Transform Inspired Algorithm for Unsupervised Image Segmentation", IEEE Access 12, 99029 (2024).

[153] Giulia Meuli, Mathias Soeken, and Giovanni De Micheli, "Xor-And-Inverter Graphs for Quantum Compilation", npj Quantum Information 8 1, 7 (2022).

[154] Tianyin Li, Wai Kin Lai, Enke Wang, and Hongxi Xing, "Scattering amplitude from quantum computing with reduction formula", Physical Review D 109 3, 036025 (2024).

[155] Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Giovanni De Micheli, "LUT-Based Hierarchical Reversible Logic Synthesis", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38 9, 1675 (2019).

[156] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang, "Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design", Quantum 4, 341 (2020).

[157] Yongsoo Hwang, Taewan Kim, Chungheon Baek, and Byung-Soo Choi, "Integrated Analysis of Performance and Resources in Large-Scale Quantum Computing", Physical Review Applied 13 5, 054033 (2020).

[158] Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan, "A Quantum interpretation of separating conjunction for local reasoning of Quantum programs based on separation logic", Proceedings of the ACM on Programming Languages 6 POPL, 1 (2022).

[159] Ussama Assad, Muhammad Arshad Shehzad Hassan, Umar Farooq, Asif Kabir, Muhammad Zeeshan Khan, S. Sabahat H. Bukhari, Zain ul Abidin Jaffri, Judit Oláh, and József Popp, "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods", Energies 15 6, 2003 (2022).

[160] Leon Riesebos, Brad Bondurant, Jacob Whitlow, Junki Kim, Mark Kuzyk, Tianyi Chen, Samuel Phiri, Ye Wang, Chao Fang, Andrew Van Horn, Jungsang Kim, and Kenneth R. Brown, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 545 (2022) ISBN:978-1-6654-9113-6.

[161] Johanna Barzen, Frank Leymann, Michael Falkenthal, Daniel Vietz, Benjamin Weder, and Karoline Wild, Communications in Computer and Information Science 1399, 25 (2021) ISBN:978-3-030-72368-2.

[162] Michael L. Wall, Matthew R. Abernathy, and Gregory Quiroz, "Generative machine learning with tensor networks: Benchmarks on near-term quantum computers", Physical Review Research 3 2, 023010 (2021).

[163] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas, Diego García-Martín, Artur Garcia-Saez, José Ignacio Latorre, and Stefano Carrazza, " Qibo: a framework for quantum simulation with hardware acceleration", Quantum Science and Technology 7 1, 015018 (2022).

[164] Christopher John Wright, Mikel Luján, Pavlos Petoumenos, and John Goodacre, Proceedings of the 21st ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes 65 (2024) ISBN:9798400711183.

[165] Nguyen Tan Viet, Nguyen Thi Chuong, Vu Thi Ngoc Huyen, and Le Bin Ho, "tqix.pis: A toolbox for quantum dynamics simulation of spin ensembles in Dicke basis", Computer Physics Communications 286, 108686 (2023).

[166] Jonathan Romero and Alán Aspuru‐Guzik, "Variational Quantum Generators: Generative Adversarial Quantum Machine Learning for Continuous Distributions", Advanced Quantum Technologies 4 1, 2000003 (2021).

[167] Felipe Ferreira and José Campos, "An exploratory study on the usage of quantum programming languages", Science of Computer Programming 240, 103217 (2025).

[168] Ludwig Schmid, David F Locher, Manuel Rispler, Sebastian Blatt, Johannes Zeiher, Markus Müller, and Robert Wille, "Computational capabilities and compiler development for neutral atom quantum processors—connecting tool developers and hardware experts", Quantum Science and Technology 9 3, 033001 (2024).

[169] Pavlo V. Zahorodk, Yevhenii O. Modlo, Olga O. Kalinichenko, Tetiana V. Selivanova, and Serhiy O. Semerikov, Quantum enhanced machine learning: An overview (2021).

[170] Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana Franklin, Margaret Martonosi, and Frederic T. Chong, 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA) 570 (2020) ISBN:978-1-7281-4661-4.

[171] Tom Krüger and Wolfgang Mauerer, Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops 445 (2020) ISBN:9781450379632.

[172] Thomas Häner, Torsten Hoefler, and Matthias Troyer, "Assertion-based optimization of Quantum programs", Proceedings of the ACM on Programming Languages 4 OOPSLA, 1 (2020).

[173] Gabriel Greene‐Diniz and David Muñoz Ramo, "Generalized unitary coupled cluster excitations for multireference molecular states optimized by the variational quantum eigensolver", International Journal of Quantum Chemistry 121 4, e26352 (2021).

[174] Damian S. Steiger, Thomas Häner, and Matthias Troyer, "Advantages of a modular high-level quantum programming framework", Microprocessors and Microsystems 66, 81 (2019).

[175] Tianyin Li, Xingyu Guo, Wai Kin Lai, Xiaohui Liu, Enke Wang, Hongxi Xing, Dan-Bo Zhang, and Shi-Liang Zhu, "Partonic collinear structure by quantum computing", Physical Review D 105 11, L111502 (2022).

[176] Yanjun Ji, Kathrin F. Koenig, and Ilia Polian, "Optimizing quantum algorithms on bipotent architectures", Physical Review A 108 2, 022610 (2023).

[177] Zhi-Quan Shi, Fang-Gang Duan, and Dan-Bo Zhang, "Locating quantum critical points with shallow quantum circuits", Physics Letters A 463, 128683 (2023).

[178] Chenyang Jiao, Weihua Zhang, and Li Shen, Proceedings of the 52nd International Conference on Parallel Processing 203 (2023) ISBN:9798400708435.

[179] X. Fu, Jintao Yu, Xing Su, Hanru Jiang, Hua Wu, Fucheng Cheng, Xi Deng, Jinrong Zhang, Lei Jin, Yihang Yang, Le Xu, Chunchao Hu, Anqi Huang, Guangyao Huang, Xiaogang Qiang, Mingtang Deng, Ping Xu, Weixia Xu, Wanwei Liu, Yu Zhang, Yuxin Deng, Junjie Wu, and Yuan Feng, "Quingo: A Programming Framework for Heterogeneous Quantum-Classical Computing with NISQ Features", ACM Transactions on Quantum Computing 2 4, 1 (2021).

[180] Geng-Li Zhang, Di Liu, and Man-Hong Yung, "Observation of exceptional point in a PT broken non-Hermitian system simulated using a quantum circuit", Scientific Reports 11 1, 13795 (2021).

[181] Antonio García de la Barrera, Ignacio García-Rodríguez de Guzmán, Macario Polo, and José A. Cruz-Lemus, Quantum Software Engineering 167 (2022) ISBN:978-3-031-05323-8.

[182] Marie Salm, Johanna Barzen, Frank Leymann, Benjamin Weder, and Karoline Wild, Communications in Computer and Information Science 1429, 64 (2021) ISBN:978-3-030-87567-1.

[183] J. A. Bravo-Montes, Miriam Bastante, Guillermo Botella, Alberto del Barrio, and F. García-Herrero, "A methodology to select and adjust quantum noise models through emulators: benchmarking against real backends", EPJ Quantum Technology 11 1, 71 (2024).

[184] Priyanka Mukhopadhyay, "Composability of global phase invariant distance and its application to approximation error management", Journal of Physics Communications 5 11, 115017 (2021).

[185] Rozhin Eskandarpour, Kumar Jang Bahadur Ghosh, Amin Khodaei, Aleksi Paaso, and Liuxi Zhang, "Quantum-Enhanced Grid of the Future: A Primer", IEEE Access 8, 188993 (2020).

[186] Christina Petschnigg, Mathias Brandstotter, Horst Pichler, Michael Hofbaur, and Bernhard Dieber, 2019 International Conference on Robotics and Automation (ICRA) 803 (2019) ISBN:978-1-5386-6027-0.

[187] Alwin Zulehner and Robert Wille, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) 90 (2019) ISBN:978-3-9819263-2-3.

[188] Nirupma Pathak, Neeraj Kumar Misra, Bandan Kumar Bhoi, and Santosh Kumar, Smart Innovation, Systems and Technologies 235, 523 (2022) ISBN:978-981-16-2876-4.

[189] Thien Nguyen and Alexander J. McCaskey, "Extending Python for Quantum-classical Computing via Quantum Just-in-time Compilation", ACM Transactions on Quantum Computing 3 4, 1 (2022).

[190] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, "A quantum engineer's guide to superconducting qubits", Applied Physics Reviews 6 2, 021318 (2019).

[191] Tyson Jones, Anna Brown, Ian Bush, and Simon C. Benjamin, "QuEST and High Performance Simulation of Quantum Computers", Scientific Reports 9 1, 10736 (2019).

[192] Martin Kong, "On the Impact of Affine Loop Transformations in Qubit Allocation", ACM Transactions on Quantum Computing 2 3, 1 (2021).

[193] Antonio García de la Barrera, Ignacio García‐Rodríguez de Guzmán, Macario Polo, and Mario Piattini, "Quantum software testing: State of the art", Journal of Software: Evolution and Process 35 4, e2419 (2023).

[194] Khaled Khalfaoui, Tahar Boudjedaa, and El Hillali Kerkouche, "Automatic design of quantum circuits", Quantum Information Processing 20 9, 283 (2021).

[195] Armin Ahmadzadeh and Hamid Sarbazi-Azad, "Fast scalable and low-power quantum circuit simulation on the cluster of GPUs platforms", Optical and Quantum Electronics 56 10, 1646 (2024).

[196] Zhiqian Xu, Yi Fan, Chu Guo, and Honghui Shang, "MPS-VQE: A variational quantum computational chemistry simulator with matrix product states", Computer Physics Communications 294, 108897 (2024).

[197] Wonho Jang, Koji Terashi, Masahiko Saito, Christian W. Bauer, Benjamin Nachman, Yutaro Iiyama, Ryunosuke Okubo, and Ryu Sawada, "Initial-State Dependent Optimization of Controlled Gate Operations with Quantum Computer", Quantum 6, 798 (2022).

[198] Yuhong Song, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Wenlong Xiao, Qijun Dai, and Longshan Xu, "QuanPath: achieving one-step communication for distributed quantum circuit simulation", Quantum Information Processing 23 1, 1 (2023).

[199] F. Orts, E. Filatovas, G. Ortega, J. F. SanJuan-Estrada, and E. M. Garzón, "Improving the number of T gates and their spread in integer multipliers on quantum computing", Physical Review A 107 4, 042621 (2023).

[200] Hua Wu, Yuxin Deng, Ming Xu, and Wenjie Du, Lecture Notes in Computer Science 12545, 307 (2020) ISBN:978-3-030-64275-4.

[201] Cupjin Huang, Fang Zhang, Michael Newman, Xiaotong Ni, Dawei Ding, Junjie Cai, Xun Gao, Tenghui Wang, Feng Wu, Gengyan Zhang, Hsiang-Sheng Ku, Zhengxiong Tian, Junyin Wu, Haihong Xu, Huanjun Yu, Bo Yuan, Mario Szegedy, Yaoyun Shi, Hui-Hai Zhao, Chunqing Deng, and Jianxin Chen, "Efficient parallelization of tensor network contraction for simulating quantum computation", Nature Computational Science 1 9, 578 (2021).

[202] Jarosław Adam Miszczak, Companion Proceedings of the 7th International Conference on the Art, Science, and Engineering of Programming 101 (2023) ISBN:9798400707551.

[203] Damien Nguyen, Dmitry Mikushin, and Yung Man-Hong, 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1056 (2021) ISBN:978-3-9819263-5-4.

[204] Hoa T. Nguyen, Muhammad Usman, and Rajkumar Buyya, 2023 IEEE International Conference on Quantum Software (QSW) 21 (2023) ISBN:979-8-3503-0479-4.

[205] Stephen Diadamo, Janis Notzel, Benjamin Zanger, and Mehmet Mert Bese, "QuNetSim: A Software Framework for Quantum Networks", IEEE Transactions on Quantum Engineering 2, 1 (2021).

[206] Jorge Vázquez-Pérez, César Piñeiro, Juan C. Pichel, Tomás F. Pena, and Andrés Gómez, "QPU integration in OpenCL for heterogeneous programming", The Journal of Supercomputing 80 8, 11682 (2024).

[207] Michael L. Wall and Giuseppe D'Aguanno, "Tree-tensor-network classifiers for machine learning: From quantum inspired to quantum assisted", Physical Review A 104 4, 042408 (2021).

[208] Paramita Basak Upama, Md Jobair Hossain Faruk, Mohammad Nazim, Mohammad Masum, Hossain Shahriar, Gias Uddin, Shabir Barzanjeh, Sheikh Iqbal Ahamed, and Akond Rahman, 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC) 520 (2022) ISBN:978-1-6654-8810-5.

[209] XiaoYu Jing, YanJun Li, GuangYue Zhao, Huiqin Xie, and Qi Wang, "Quantum circuit implementation and resource analysis of LBlock and LiCi", Quantum Information Processing 22 9, 347 (2023).

[210] Stavros Efthymiou, Alvaro Orgaz-Fuertes, Rodolfo Carobene, Juan Cereijo, Andrea Pasquale, Sergi Ramos-Calderer, Simone Bordoni, David Fuentes-Ruiz, Alessandro Candido, Edoardo Pedicillo, Matteo Robbiati, Yuanzheng Paul Tan, Jadwiga Wilkens, Ingo Roth, José Ignacio Latorre, and Stefano Carrazza, "Qibolab: an open-source hybrid quantum operating system", Quantum 8, 1247 (2024).

[211] Ryan LaRose, "Overview and Comparison of Gate Level Quantum Software Platforms", Quantum 3, 130 (2019).

[212] Aniruddha Bapat, Zachary Eldredge, James R. Garrison, Abhinav Deshpande, Frederic T. Chong, and Alexey V. Gorshkov, "Unitary entanglement construction in hierarchical networks", Physical Review A 98 6, 062328 (2018).

[213] P. S. Aithal, "Advances and New Research Opportunities in Quantum Computing Technology by Integrating it with Other ICCT Underlying Technologies", International Journal of Case Studies in Business, IT, and Education 314 (2023).

[214] Niels M. P. Neumann, Maran P. P. van Heesch, Frank Phillipson, and Antoine A. P. Smallegange, 2021 International Conference on Military Communication and Information Systems (ICMCIS) 1 (2021) ISBN:978-1-6654-4586-3.

[215] Aeyoung Kim, Seong-Min Cho, Chang-Bae Seo, Sokjoon Lee, and Seung-Hyun Seo, "Quantum Modular Adder over GF(2n − 1) without Saving the Final Carry", Applied Sciences 11 7, 2949 (2021).

[216] Ellis Wilson, Frank Mueller, and Scott Pakin, SC22: International Conference for High Performance Computing, Networking, Storage and Analysis 1 (2022) ISBN:978-1-6654-5444-5.

[217] Nai-Wei Hsu, Chuan-Chi Wang, Chia-Hsin Hsu, Chia-Heng Tu, and Shih-Hao Hung, "Toward cost-effective quantum circuit simulation with performance tuning techniques", Connection Science 36 1, 2349541 (2024).

[218] Mao Zhang, Huai-Ming Yu, Haidong Yuan, Xiaoguang Wang, Rafał Demkowicz-Dobrzański, and Jing Liu, "QuanEstimation: An open-source toolkit for quantum parameter estimation", Physical Review Research 4 4, 043057 (2022).

[219] Tianyin Li, Xingyu Guo, Wai Kin Lai, Xiaohui Liu, Enke Wang, Hongxi Xing, Dan-Bo Zhang, and Shi-Liang Zhu, "Exploring light-cone distribution amplitudes from quantum computing", Science China Physics, Mechanics & Astronomy 66 8, 281011 (2023).

[220] Thomas Grurl, Jurgen Fus, Stefan Hillmich, Lukas Burgholzer, and Robert Wille, 2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL) 176 (2020) ISBN:978-1-7281-5406-0.

[221] Iskren Vankov, Daniel Mills, Petros Wallden, and Elham Kashefi, "Methods for classically simulating noisy networked quantum architectures", Quantum Science and Technology 5 1, 014001 (2020).

[222] Ahmed Abid Moueddene, Nader Khammassi, Koen Bertels, and Carmen G. Almudever, "Realistic simulation of quantum computation using unitary and measurement channels", Physical Review A 102 5, 052608 (2020).

[223] Francisco Orts, Gloria Ortega, Elías F. Combarro, Ignacio F. Rúa, and Ester M. Garzón, "Optimized quantum leading zero detector circuits", Quantum Information Processing 22 1, 28 (2022).

[224] Simone Cantori, David Vitali, and Sebastiano Pilati, "Supervised learning of random quantum circuits via scalable neural networks", Quantum Science and Technology 8 2, 025022 (2023).

[225] Kyungbae Jang, Gyeongju Song, Hyeokdong Kwon, Siwoo Uhm, Hyunji Kim, Wai-Kong Lee, and Hwajeong Seo, "Grover on PIPO", Electronics 10 10, 1194 (2021).

[226] Manuel De Stefano, Fabiano Pecorelli, Dario Di Nucci, Fabio Palomba, and Andrea De Lucia, "The quantum frontier of software engineering: A systematic mapping study", Information and Software Technology 175, 107525 (2024).

[227] Albert T. Schmitz, Nicolas P. D. Sawaya, Sonika Johri, and A. Y. Matsuura, "Graph optimization perspective for low-depth Trotter-Suzuki decomposition", Physical Review A 109 4, 042418 (2024).

[228] Sukhpal Singh Gill, Adarsh Kumar, Harvinder Singh, Manmeet Singh, Kamalpreet Kaur, Muhammad Usman, and Rajkumar Buyya, "Quantum computing: A taxonomy, systematic review and future directions", Software: Practice and Experience 52 1, 66 (2022).

[229] Axel Dahlberg and Stephanie Wehner, "SimulaQron—a simulator for developing quantum internet software", Quantum Science and Technology 4 1, 015001 (2018).

[230] Qun Liu, Bart Preneel, Zheng Zhao, and Meiqin Wang, Lecture Notes in Computer Science 14440, 67 (2023) ISBN:978-981-99-8726-9.

[231] Zhihao Wu, Junjie Wu, and Anqi Huang, "PhotoniQLAB: a framework for simulating photonic quantum information processing experiments", Quantum Science and Technology 6 2, 024001 (2021).

[232] Haotian Shi and Xiutao Feng, Lecture Notes in Computer Science 15491, 358 (2025) ISBN:978-981-96-0943-7.

[233] Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, and Naijun Zhan, Lecture Notes in Computer Science 11562, 187 (2019) ISBN:978-3-030-25542-8.

[234] Thomas Grurl, Richard Kueng, Jurgen FuB, and Robert Wille, 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) 194 (2021) ISBN:978-3-9819263-5-4.

[235] Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexander Pitchford, and Nathan Shammah, "Pulse-level noisy quantum circuits with QuTiP", Quantum 6, 630 (2022).

[236] Shi-Xin Zhang, Jonathan Allcock, Zhou-Quan Wan, Shuo Liu, Jiace Sun, Hao Yu, Xing-Han Yang, Jiezhong Qiu, Zhaofeng Ye, Yu-Qin Chen, Chee-Kong Lee, Yi-Cong Zheng, Shao-Kai Jian, Hong Yao, Chang-Yu Hsieh, and Shengyu Zhang, "TensorCircuit: a Quantum Software Framework for the NISQ Era", Quantum 7, 912 (2023).

[237] Honghui Shang, Li Shen, Yi Fan, Zhiqian Xu, Chu Guo, Jie Liu, Wenhao Zhou, Huan Ma, Rongfen Lin, Yuling Yang, Fang Li, Zhuoya Wang, Yunquan Zhang, and Zhenyu Li, SC22: International Conference for High Performance Computing, Networking, Storage and Analysis 1 (2022) ISBN:978-1-6654-5444-5.

[238] David Ittah, Thomas Häner, Vadym Kliuchnikov, and Torsten Hoefler, "QIRO: A Static Single Assignment-based Quantum Program Representation for Optimization", ACM Transactions on Quantum Computing 3 3, 1 (2022).

[239] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta, "Open Quantum Assembly Language", arXiv:1707.03429, (2017).

[240] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan, "t|ket⟩: a retargetable compiler for NISQ devices", Quantum Science and Technology 6 1, 014003 (2021).

[241] Jarrod R. McClean, Kevin J. Sung, Ian D. Kivlichan, Yudong Cao, Chengyu Dai, E. Schuyler Fried, Craig Gidney, Brendan Gimby, Pranav Gokhale, Thomas Häner, Tarini Hardikar, Vojtěch Havlíček, Oscar Higgott, Cupjin Huang, Josh Izaac, Zhang Jiang, Xinle Liu, Sam McArdle, Matthew Neeley, Thomas O'Brien, Bryan O'Gorman, Isil Ozfidan, Maxwell D. Radin, Jhonathan Romero, Nicholas Rubin, Nicolas P. D. Sawaya, Kanav Setia, Sukin Sim, Damian S. Steiger, Mark Steudtner, Qiming Sun, Wei Sun, Daochen Wang, Fang Zhang, and Ryan Babbush, "OpenFermion: The Electronic Structure Package for Quantum Computers", arXiv:1710.07629, (2017).

[242] Amr Elsharkawy, Xiao-Ting Michelle To, Philipp Seitz, Yanbin Chen, Yannick Stade, Manuel Geiger, Qunsheng Huang, Xiaorang Guo, Muhammad Arslan Ansari, Christian B. Mendl, Dieter Kranzlmüller, and Martin Schulz, "Integration of Quantum Accelerators with High Performance Computing -- A Review of Quantum Programming Tools", arXiv:2309.06167, (2023).

[243] Frederic T. Chong, Diana Franklin, and Margaret Martonosi, "Programming languages and compiler design for realistic quantum hardware", Nature 549 7671, 180 (2017).

[244] Kanav Setia and James D. Whitfield, "Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer", Journal of Chemical Physics 148 16, 164104 (2018).

[245] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank, "Compiling quantum circuits to realistic hardware architectures using temporal planners", Quantum Science and Technology 3 2, 025004 (2018).

[246] E. Schuyler Fried, Nicolas P. D. Sawaya, Yudong Cao, Ian D. Kivlichan, Jhonathan Romero, and Alán Aspuru-Guzik, "qTorch: The quantum tensor contraction handler", PLoS ONE 13 12, e0208510 (2018).

[247] Alexander McCaskey, Eugene Dumitrescu, Mengsu Chen, Dmitry Lyakh, and Travis Humble, "Validating quantum-classical programming models with tensor network simulations", PLoS ONE 13 12, e0206704 (2018).

[248] Jin-Guo Liu and Lei Wang, "Differentiable Learning of Quantum Circuit Born Machine", arXiv:1804.04168, (2018).

[249] Thomas Häner and Damian S. Steiger, "0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit", arXiv:1704.01127, (2017).

[250] Krysta M. Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler, "Q#: Enabling scalable quantum computing and development with a high-level domain-specific language", arXiv:1803.00652, (2018).

[251] Hao Tang, Yan-Yan Zhu, Jun Gao, Marcus Lee, Peng-Cheng Lai, and Xian-Min Jin, "FeynmanPAQS: A Graphical Interface Program for Photonic Analog Quantum Computing", arXiv:1810.02289, (2018).

[252] Kyle E. C. Booth, Minh Do, J. Christopher Beck, Eleanor Rieffel, Davide Venturelli, and Jeremy Frank, "Comparing and Integrating Constraint Programming and Temporal Planning for Quantum Circuit Compilation", arXiv:1803.06775, (2018).

[253] Alwin Zulehner and Robert Wille, "Advanced Simulation of Quantum Computations", arXiv:1707.00865, (2017).

[254] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger, "A tutorial introduction to quantum circuit programming in dependently typed Proto-Quipper", arXiv:2005.08396, (2020).

[255] Hao Tang, Xiao-Jun Xu, Yan-Yan Zhu, Jun Gao, Xuan Chen, Marcus Lee, Peng-Cheng Lai, and Xian-Min Jin, "FeynmanPAQS: a graphical interface program for photonic analog quantum computing", Optical Engineering 61, 081804 (2022).

[256] Kieran Young, Marcus Scese, and Ali Ebnenasir, "Simulating Quantum Computations on Classical Machines: A Survey", arXiv:2311.16505, (2023).

[257] E. Schuyler Fried, Nicolas P. D. Sawaya, Yudong Cao, Ian D. Kivlichan, Jhonathan Romero, and Alán Aspuru-Guzik, "qTorch: The Quantum Tensor Contraction Handler", arXiv:1709.03636, (2017).

[258] Evandro Chagas Ribeiro da Rosa and Bruno G. Taketani, "QSystem: bitwise representation for quantum circuit simulations", arXiv:2004.03560, (2020).

[259] Mathias Soeken, Thomas Häner, and Martin Roetteler, "Programming Quantum Computers Using Design Automation", arXiv:1803.01022, (2018).

[260] Randy Lewis and R. M. Woloshyn, "A qubit model for U(1) lattice gauge theory", arXiv:1905.09789, (2019).

[261] Yu-Cheng Lin, Chuan-Chi Wang, Chia-Heng Tu, and Shih-Hao Hung, "Towards Optimizations of Quantum Circuit Simulation for Solving Max-Cut Problems with QAOA", arXiv:2312.03019, (2023).

[262] Adarsh Kumar, Ali Ismail Awad, Gaurav Sharma, Rajalakshmi Krishnamurthi, Saurabh Jain, P. Srikanth, Kriti Sharma, Mustapha Hedabou, and Surinder Sood, "Revolutionizing Modern Networks: Advances in AI, Machine Learning, and Blockchain for Quantum Satellites and UAV-based Communication", arXiv:2303.11753, (2023).

[263] Anurudh Peduri, Ina Schaefer, and Michael Walter, "QbC: Quantum Correctness by Construction", arXiv:2307.15641, (2023).

[264] Alexander Singh, Konstantinos Giannakis, and Theodore Andronikos, "Qumin, a minimalist quantum programming language", arXiv:1704.04460, (2017).

[265] Charles Yuan and Michael Carbin, "The T-Complexity Costs of Error Correction for Control Flow in Quantum Computation", arXiv:2311.12772, (2023).

[266] Prakash Murali, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi, "Formal Constraint-based Compilation for Noisy Intermediate-Scale Quantum Systems", arXiv:1903.03276, (2019).

[267] Evandro Chagas Ribeiro da Rosa and Rafael de Santiago, "Classical and Quantum Data Interaction in Programming Languages: A Runtime Architecture", arXiv:2006.00131, (2020).

[268] Augustin Borgna and Rafael Romero, "Encoding High-level Quantum Programs as SZX-diagrams", arXiv:2206.09376, (2022).

[269] Keith A. Britt, Fahd A. Mohiyaddin, and Travis S. Humble, "Quantum Accelerators for High-Performance Computing Systems", arXiv:1712.01423, (2017).

[270] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, "An Experimental Microarchitecture for a Superconducting Quantum Processor", arXiv:1708.07677, (2017).

[271] Youssef Moawad, Wim Vanderbauwhede, and René Steijl, "Transformations for accelerator-based quantum circuit simulation in Haskell", arXiv:2210.12703, (2022).

[272] Mathias Soeken and Mariia Mykhailova, "Automatic oracle generation in Microsoft's Quantum Development Kit using QIR and LLVM passes", arXiv:2212.01740, (2022).

[273] Jarosław Adam Miszczak, "Symbolic quantum programming for supporting applications of quantum computing technologies", arXiv:2302.09401, (2023).

[274] Osman Ceylan and Ihsan Yilmaz, "Simulation Tests of Tokyo Quantum Network", Materials Science and Engineering Conference Series 1187 1, 012023 (2021).

[275] Neilson Carlos Leite Ramalho, Higor Amario de Souza, and Marcos Lordello Chaim, "Testing and Debugging Quantum Programs: The Road to 2030", arXiv:2405.09178, (2024).

[276] Chuan-Chi Wang, Yu-Cheng Lin, Yan-Jie Wang, Chia-Heng Tu, and Shih-Hao Hung, "Queen: A quick, scalable, and comprehensive quantum circuit simulation for supercomputing", arXiv:2406.14084, (2024).

[277] Le Chang, Saitej Yavvari, Rance Cleaveland, Samik Basu, and Liyi Li, "DisQ: A Markov Decision Process Based Language for Quantum Distributed Systems", arXiv:2407.09710, (2024).

[278] Evandro C. R. Rosa, Eduardo I. Duzzioni, and Rafael de Santiago, "Optimizing Gate Decomposition for High-Level Quantum Programming", arXiv:2406.05581, (2024).

[279] Julien Gacon, "Scalable Quantum Algorithms for Noisy Quantum Computers", arXiv:2403.00940, (2024).

[280] Youssef Moawad, Andrew Brown, René Steijl, and Wim Vanderbauwhede, "Optimising Iteration Scheduling for Full-State Vector Simulation of Quantum Circuits on FPGAs", arXiv:2411.18354, (2024).

[281] Benoît Valiron, "On Quantum Programming Languages", arXiv:2410.13337, (2024).

[282] Alessio Cicero, Mohammad Ali Maleki, Muhammad Waqar Azhar, Anton Frisk Kockum, and Pedro Trancoso, "Simulation of Quantum Computers: Review and Acceleration Opportunities", arXiv:2410.12660, (2024).

[283] Neill Lambert, Eric Giguère, Paul Menczel, Boxi Li, Patrick Hopf, Gerardo Suárez, Marc Gali, Jake Lishman, Rushiraj Gadhvi, Rochisha Agarwal, Asier Galicia, Nathan Shammah, Paul Nation, J. R. Johansson, Shahnawaz Ahmed, Simon Cross, Alexander Pitchford, and Franco Nori, "QuTiP 5: The Quantum Toolbox in Python", arXiv:2412.04705, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2025-01-06 01:07:47) and SAO/NASA ADS (last updated successfully 2025-01-08 17:18:01). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2025-01-08 17:17:48: cURL error 28: Operation timed out after 10000 milliseconds with 95077 bytes received

3 thoughts on “ProjectQ: an open source software framework for quantum computing

  1. Pingback: Qstarter award for Quantum! – Quantum

  2. Pingback: Qstarter award for Quantum! – Quantum Electronics

  3. Pingback: Perspective in Quantum Views by Neil J. Ross "The dawn of quantum programming"