Fundamentals of Electronics: Book 2 AmplifiersAnalysis and Design | SpringerLink
Skip to main content

Fundamentals of Electronics

Book 2 AmplifiersAnalysis and Design

  • Book
  • © 2016

Overview

Part of the book series: Synthesis Lectures on Digital Circuits & Systems (SLDCS)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book, Amplifiers: Analysis and Design, is the second of four books of a larger work, Fundamentals of Electronics. It is comprised of four chapters that describe the fundamentals of amplifier performance. Beginning with a review of two-port analysis, the first chapter introduces the modeling of the response of transistors to AC signals. Basic one-transistor amplifiers are extensively discussed. The next chapter expands the discussion to multiple transistor amplifiers. The coverage of simple amplifiers is concluded with a chapter that examines power amplifiers. This discussion defines the limits of small-signal analysis and explores the realm where these simplifying assumptions are no longer valid and distortion becomes present. The final chapter concludes the book with the first of two chapters in Fundamental of Electronics on the significant topic of feedback amplifiers. Fundamentals of Electronics has been designed primarily for use in an upper division course in electronics forelectrical engineering students. Typically such a course spans a full academic years consisting of two semesters or three quarters. As such, Amplifiers: Analysis and Design, and two other books, Electronic Devices and Circuit Applications, and Active Filters and Amplifier Frequency Response, form an appropriate body of material for such a course. Secondary applications include the use with Electronic Devices and Circuit Applications in a one-semester electronics course for engineers or as a reference for practicing engineers.

Similar content being viewed by others

Table of contents (4 chapters)

Authors and Affiliations

  • University of San Diego, USA

    Thomas F. Schubert, Ernest M. Kim

About the authors

Thomas Schubert received BS, MS, and PhD degrees in Electrical Engineering from the University of California at Irvine (UCI). He was a member of the first engineering graduating class and the first triple-degree recipient in engineering at UCI. His doctoral work discussed the propagation of polarized light in anisotropic media. Dr. Schubert arrived at the University of San Diego in August, 1987 as one of the two founding faculty of its new Engineering Program. From 1997 to 2003, he led the Department as Chairman, a position that became Director of Engineering Programs during his leadership tenure. Prior to coming to USD, he was at the Space and Communications Division of Hughes Aircraft Company, the University of Portland, and Portland State University. He is a Registered Professional Engineer in the State of Oregon. In 2012, Dr. Schubert was awarded the Robert G. Quinn Award by the American Society of EngineeringEducation ""in recognition of outstanding contributions in providing and promoting excellence in engineering experimentation and laboratory instruction.""Ernest Kim received his B.S.E.E. from the University of Hawaii at Manoa in Honolulu, Hawaii in 1977, an M.S.E.E. in 1980 and Ph.D. in Electrical Engineering in 1987 from New Mexico State University in Las Cruces, New Mexico. His dissertation was on precision near-field exit radiation measurements from optical fibers. Dr. Kim worked as an Electrical Engineer for the University of Hawaii at the Naval Ocean Systems Center, Hawaii Labs at Kaneohe Marine Corps Air Station after graduating with his B.S.E.E. Upon completing his M.S.E.E., he was an electrical engineer with the National Bureau of Standards in Boulder, Colorado designing hardware for precision fiber optic measurements. He then entered the commercial sector as a staff engineer with Burroughs Corporation in San Diego, California developing fiber optic LAN systems. He left Burroughs for Tacan/IPITEK Corporation as Manager of Electro-Optic Systems developing fiber optic CATV hardware and systems. In 1990 he joined the faculty of the University of San Diego. He remains an active consultant in radio frequency and analog circuit design, and teaches review courses for the engineering Fundamentals Examination. Dr. Kim is a member of the IEEE, ASEE, and CSPE. He is a Licensed Professional Electrical Engineer in California.

Bibliographic Information

Publish with us