Journal of Open Source Software: PyVBMC: Efficient Bayesian inference in Python

PyVBMC: Efficient Bayesian inference in Python

Python Submitted 16 March 2023Published 21 June 2023
Review

Editor: @rkurchin (all papers)
Reviewers: @matt-graham (all reviews), @isdanni (all reviews)

Authors

Bobby Huggins (0009-0006-3475-5964), Chengkun Li (0000-0001-5848-910X), Marlon Tobaben (0000-0002-9778-0853), Mikko J. Aarnos, Luigi Acerbi (0000-0001-7471-7336)

Citation

Huggins et al., (2023). PyVBMC: Efficient Bayesian inference in Python. Journal of Open Source Software, 8(86), 5428, https://doi.org/10.21105/joss.05428

@article{Huggins2023, doi = {10.21105/joss.05428}, url = {https://doi.org/10.21105/joss.05428}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {86}, pages = {5428}, author = {Bobby Huggins and Chengkun Li and Marlon Tobaben and Mikko J. Aarnos and Luigi Acerbi}, title = {PyVBMC: Efficient Bayesian inference in Python}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Bayesian statistics Bayesian inference Probabilistic programming Model evidence Machine learning Simulator-based inference

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066