IJAT Vol.14 p.890 (2020) | Fuji Technology Press: academic journal publisher

single-au.php

IJAT Vol.14 No.6 pp. 890-908
doi: 10.20965/ijat.2020.p0890
(2020)

Review:

Defining Requirements on Technology Systems Assessment from Life Cycle Perspectives: Cases on Recycling of Photovoltaic and Secondary Batteries

Yasunori Kikuchi*,†, Aya Heiho*, Yi Dou*, Izuru Suwa*, I-Ching Chen**, Yasuhiro Fukushima**, and Chiharu Tokoro***

*The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Corresponding author

**Tohoku University, Sendai, Japan

***Waseda University, Tokyo, Japan

Received:
April 20, 2020
Accepted:
August 27, 2020
Published:
November 5, 2020
Keywords:
bibliometric analysis, requirement definition, life cycle assessment
Abstract

Since the enactment of the “Feed-in Tariff” scheme in 2012, the solar power generation capacity in Japan has been steadily growing. Therefore, in the near future, the demand for the mass processing of spent photovoltaic (PV) panels is expected to increase. Secondary batteries, especially lithium-ion batteries (LiBs), have become important products for vehicles and mobile devices. The production of LiBs is also expected to significantly increase in the near future. In this study, we address the design of recycling systems for such emerging technologies. From life cycle perspectives, the requirements for the assessment of these technology systems are carefully defined through a bibliometric analysis of technology assessments, critical reviews of current research and developments in the recycling of PV panels and LiBs, and analysis of the intensities of life cycle impacts (such as greenhouse gas emissions and resource use). The necessities for life cycle assessments, material flow analyses, and other assessment methods are clarified, along with the conditions to be examined using these assessment methods.

Cite this article as:
Y. Kikuchi, A. Heiho, Y. Dou, I. Suwa, I. Chen, Y. Fukushima, and C. Tokoro, “Defining Requirements on Technology Systems Assessment from Life Cycle Perspectives: Cases on Recycling of Photovoltaic and Secondary Batteries,” Int. J. Automation Technol., Vol.14 No.6, pp. 890-908, 2020.
Data files:
References
  1. [1] Y. Kishita and Y. Umeda, “Development of Japan’s photovoltaic deployment scenarios in 2030,” Int. J. Automation Technol., Vol.11, No.4, pp. 583-591, 2017.
  2. [2] M. Elrawemi, L. Blunt, H. Muhamedsalih, F. Gao, and L. Fleming, “Implementation of in process surface metrology for R2R flexible PV barrier films,” Int. J. Automation Technol., Vol.9, No.3, pp. 312-321, 2015.
  3. [3] F. C. Padoan, P. Altimari, and F. Pagnanelli, “Recycling of end of life photovoltaic panels: A chemical prospective on process development,” Solar Energy, Vol.177, pp. 746-761, 2019.
  4. [4] Ministry of Economy, Trade and Industry (METI), Feed-in Tariff scheme in Japan. https://www.meti.go.jp/english/policy/energy_environment/renewable/pdf/summary201207.pdf [Accessed March 31, 2020]
  5. [5] A. Paiano, “Photovoltaic waste assessment in Italy,” Renew. Sustain. Energy Rev., Vol.41, pp. 99-112, 2015.
  6. [6] https://ec.europa.eu/jrc/sites/jrcsh/files/jrc114616_li-ion_batteries_two-pager_final.pdf [Accessed March 31, 2020]
  7. [7] Swiss Centre for Life Cycle Inventories; ecoinvent version 3.1. http://www.ecoinvent.org/database/ [Accessed December 8, 2018].
  8. [8] H. K. Salim, R. A. Stewart, O. Sahin, and M. Dudley, “Drivers, barriers and enablers to end-of-life management of solar photovoltaic and battery energy storage systems: A systematic literature review,” J. of Cleaner Production, Vol.211, pp. 537-554, 2019.
  9. [9] F. W. Geels, “Co-evolutionary and multi-level dynamics in transitions: the transformation of aviation systems and the shift from propeller to turbojet (1930–1970),” Technovation, Vol.26, pp. 999-1016, 2006.
  10. [10] Y. Kikuchi, M. Nakai, Y. Kanematsu, K. Oosawa, T. Okubo, Y. Oshita, and Y. Fukushima, “Application of technology assessments into co-learning for regional transformation: A case study of biomass energy systems in Tanegashima,” Sustain. Sci., Vol.15, No.5, pp. 1473-1494, doi: 10.1007/s11625-020-00801-12020, 2020.
  11. [11] W. H. Liew, M. H. Hassim, and D. K. S. Ng, “Review of evolution, technology and sustainability assessments of biofuel production,” J. of Cleaner Production, Vol.71, pp. 11-29, 2014.
  12. [12] D. D. Ilic, E. Dotzauer, L. Trygg, and G. Broman, “Integration of biofuel production into district heating – part I: an evaluation of biofuel production costs using four types of biofuel production plants as case studies,” J. of Cleaner Production, Vol.69, pp. 176-187, 2014.
  13. [13] X. Ji and X. Long, “A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations,” Renew Sust. Energ. Rev., Vol.61, pp. 41-52, 2016.
  14. [14] D. Neves, C. A. Silva, and S. Connors, “Design and implementation of hybrid renewable energy systems on micro-communities: a review on case studies,” Renew Sust. Energ. Rev., Vol.31, pp. 935-946, 2014.
  15. [15] E. K. Stigka, J. A. Paravantis, and G. K. Mihalakakou, “Social acceptance of renewable energy sources: a review of contingent valuation applications,” Renew Sust. Energ. Rev., Vol.32, pp. 100-106, 2014.
  16. [16] F. W. Geels, B. K. Sovacool, and S. Sorrell, “Sociotechnical transitions for deep decarbonization,” Science, Vol.357, pp. 1242-1244, 2017.
  17. [17] Innovation Policy Research Center at The University of Tokyo, Kajikawa Laboratory at Tokyo Institute of Technology, Academic Landscape, 2013. http://academic-landscape.com/ [Accessed March 31, 2020]
  18. [18] Y. Kajikawa, J. Ohno, Y. Takeda, K. Matsushima, and H. Komiyama, “Creating an academic landscape of sustainability science: an analysis of the citation network,” Sustain. Sci., Vol.2, pp. 221-231, 2007.
  19. [19] Y. Kajikawa, “Research core and framework of sustainability science,” Sustain. Sci., Vol.3, pp. 215-239, 2008.
  20. [20] Y. Kikuchi, “Activity and data models for process assessment considering sustainability,” Kagaku Kogaku Ronbunshu, Vol.40 pp. 211-223, 2014.
  21. [21] E. Kiriyama and Y. Kajikawa, “A multilayered analysis of energy security research and the energy supply process,” Appl. Energ., Vol.132, pp. 415-423, 2014.
  22. [22] Y. Kikuchi, Y. Kanematsu, R. Sato, and T. Nakagaki, “Distributed cogeneration of power and heat within an energy management strategy for mitigating fossil fuel consumption,” J. Ind. Ecol., Vol.20, pp. 289-303, 2016.
  23. [23] Y. Kikuchi, “Simulation-based approaches for design of smart energy system: a review applying bibliometric analysis,” J. Chem. Eng. Jpn., Vol.50, pp. 385-396, 2017.
  24. [24] Thomson Reuters (2017) Web of Science. http://wokinfo.com/ [Accessed March 31, 2020].
  25. [25] N. Shibata, Y. Kajikawa, Y. Takeda, and K. Matsushima, “Comparative study on methods of detecting research fronts using different types of citation,” J. Assoc. Inf. Sci. Technol., Vol.60, pp. 571-580, 2009.
  26. [26] H. Komoto, S. Kondoh, and K. Masui, “Simulating the Formation of Urban Mines Considering the Rational Decisions of Distributed End-of-Life Stakeholders,” Int. J. Automation Technol., Vol.8, No.5, pp. 653-663, 2014.
  27. [27] National Institute of Advanced Industrial Science and Technology (AIST) and Sustainable Management Promotion Organization (SuMPO), Inventory Database for Environmental Assessment (IDEA) v.2.3, 2020. http://idea-lca.com/?lang=en [Accessed March 31, 2020]
  28. [28] “LCA Society of Japan.” https://lca-forum.org/english/lime/ [Accessed March 31, 2020]
  29. [29] L. Ager-Wick Ellingsen, G. Majeau-Bettez, B. Singh, A. K. Srivastava, L. O. Valøen, and A. H. Strømman, “Life cycle assessment of a lithium-ion battery vehicle pack,” J. Ind. Ecol., Vol.18, No.1, pp. 113-124, 2013.
  30. [30] G. Majeau-Bettez, T. R. Hawkins, and A. H. Strømman, “Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles,” Environ. Sci. Technol., Vol.45, No.10, pp. 4548-4554, 2011.
  31. [31] Ministry of Internal Affairs and Communications, 2015 Input-Output Tables for Japan. http://www.soumu.go.jp/toukei_toukatsu/data/io/ [Accessed March 31, 2020]
  32. [32] Ministry of Economy, Trade and Industry, Yearbook of current production statistics machinery 2018. https://www.meti.go.jp/statistics/tyo/seidou/result/ichiran/08_seidou.html [Accessed March 31, 2020]
  33. [33] J. J. Wang, Y. Y. Jing, C. F. Zhang, and J. H. Zhao, “Review on multi-criteria decision analysis aid in sustainable energy decision-making,” Renew. Sust. Energ. Rev., Vol.13, pp. 2263-2278, 2009.
  34. [34] J. Domac, L. K. Richards, and S. Risovic, “Socio-economic drivers in implementing bioenergy projects,” Biomass Bioenergy, Vol.28, pp. 97-106, 2005.
  35. [35] L. C. Dreyer, M. Z. Hauschild, and J. Schierbeck, “A framework for social life cycle impact assessment,” Int. J. Life Cycle Assess, Vol.11, pp. 88-97, 2006.
  36. [36] M. Kanagawa and T. Nakata, “Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries,” Energy Policy, Vol.36, pp. 2016-2029, 2008.
  37. [37] A. Smith, A. Stirling, and F. Berkhout, “The governance of sustainable socio-technical transitions,” Res. Policy, Vol.34, pp. 1491-1510, 2005.
  38. [38] A. Smith, “Translating sustainabilities between green niches and socio-technical regimes,” Technol. Anal. Strateg., Vol.19 pp. 427-450, 2007.
  39. [39] F. W. Geels and J. Schot, “Typology of sociotechnical transition pathways,” Res. Policy, Vol.36, pp. 399-417, 2007.
  40. [40] M. Berg, “Patient care information systems and health care work: a sociotechnical approach,” Int. J. Med . Inform., Vol.55, pp. 87-101, 1999.
  41. [41] S. Sawyer, J. P. Allen, and H. Lee, “Broadband and mobile opportunities: a socio-technical perspective,” J. Inf. Technol., Vol.18, pp. 121-136, 2003.
  42. [42] T. Reiman and P. Oedewald, “Assessment of complex sociotechnical systems – theoretical issues concerning the use of organizational culture and organizational core task concepts,” Safety Science, Vol.45, pp. 745-768, 2007.
  43. [43] S. Niederer and J. van Dijck, “Wisdom of the crowd or technicity of content? Wikipedia as a sociotechnical system,” New Media Soc., Vol.12, pp. 1368-1387, 2010.
  44. [44] M. Clement and M. J. Guitton, “Interacting with bots online: users’ reactions to actions of automated programs in Wikipedia,” Comput Hum Behav, Vol.50, pp. 66-75, 2015.
  45. [45] I. F. Ballo, “Imagining energy futures: sociotechnical imaginaries of the future Smart Grid in Norway,” Energy Res. Soc. Sci., Vol.9, pp. 9-20, 2015.
  46. [46] B. K. Sovacool, J. Axsen, and W. Kempton, “The future promise of vehicle-to-grid (V2G) integration: A sociotechnical review and research agenda,” Annu. Rev. Env. Resour, Vol.42, pp. 377-406, 2017.
  47. [47] L. Levidow and T. Papaioannou, “Policy-driven, narrative-based evidence gathering: UK priorities for decarbonisation through biomass,” Sci. Publ. Policy, Vol.43, pp. 46-61, 2016.
  48. [48] H. T. Kulve and A. Rip, “Constructing productive engagement: pre-engagement tools for emerging technologies,” Sci. Eng. Ethics, Vol.17, pp. 699-714, 2011.
  49. [49] T. van der Schoor and B. Scholtens, “Power to the people: local community initiatives and the transition to sustainable energy,” Renew. Sust. Energ. Rev., Vol.43, pp. 666-675, 2015.
  50. [50] L. Vesnic-Alujevic, M. Breitegger, and A. G. Pereira, “What smart grids tell about innovation narratives in the European Union: hopes, imaginaries and policy,” Energy Res. Soc. Sci., Vol.12, pp. 16-26, 2016.
  51. [51] E. Gnansounou and A. Dauriat, “Techno-economic analysis of lignocellulosic ethanol: a review,” Bioresource Technol., Vol.101, pp. 4980-4991, 2010.
  52. [52] D. Klein-Marcuschamer, C. Turner, M. Allen, P. Gray, R. G. Dietzgen, P. M. Gresshoff, B. Hankamer, K. Heimann, P. T. Scott, E. Stephens, R. Speight, and L. K. Nielsen, “Technoeconomic analysis of renewable aviation fuel from microalgae, Pongamia pinnata, and sugarcane,” Biofuel Bioprod Bior., Vol.7, pp. 416-428, 2013.
  53. [53] B. Wang, B. H. Gebreslassie, and F. Q. You, “Sustainable design and synthesis of hydrocarbon biorefinery via gasification pathway: integrated life cycle assessment and technoeconomic analysis with multiobjective superstructure optimization,” Comput. Chem. Eng., Vol.52, pp. 55-76, 2013.
  54. [54] F. C. Luz, M. H. Rocha, E. E. S. Lora, O. J. Venturini, R. V. Andrade, M. M. V. Leme, and O. A. del Olmo, “Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil,” Energ. Convers Manage, Vol.103, pp. 321-337, 2015.
  55. [55] A. D. Hawkes, P. Aguiar, C. A. Hernandez-Aramburo, M. A. Leach, N. P. Brandon, T. C. Green, and C. S. Adjiman, “Techno-economic modelling of a solid oxide fuel cell stack for micro combined heat and power,” J. Power Sources, Vol.156, pp. 321-333, 2006.
  56. [56] M. Patel, X. L. Zhang, and A. Kumar, “Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review,” Renew. Sust. Energ. Rev., Vol.53, pp. 1486-1499, 2016.
  57. [57] H. X. Yang, W. Zhou, and C. Z. Lou, “Optimal design and techno-economic analysis of a hybrid solar-wind power generation system,” Appl. Energ., Vol.86, pp. 163-169, 2009.
  58. [58] D. Singh, E. Croiset, P. L. Douglas, and M. A. Douglas, “Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion,” Energy Convers Manag., Vol.44, pp. 3073-3091, 2003.
  59. [59] T. Mezher, H. Fath, Z. Abbas, and A. Khaled, “Techno-economic assessment and environmental impacts of desalination technologies,” Desalination, Vol.266, pp. 263-273, 2011.
  60. [60] M. W. Shahzad, M. Burhan, L. Ang, and K. C. Ng, “Energy-water-environment nexus underpinning future desalination sustainability,” Desalination, Vol.413, pp. 52-64, 2017.
  61. [61] Y. Y. Bang, N. J. Hong, D. S. Lee, and S. R. Lim, “Comparative assessment of solar photovoltaic panels based on metal-derived hazardous waste, resource depletion, and toxicity potentials,” Int. J. Green Energ., Vol.15, No.10, pp. 550-557, 2018.
  62. [62] M. M. Lunardi, J. P. Alvarez-Gaitan, J. I. Bilbao, and R. Corkish, “Comparative Life Cycle Assessment of End-of-Life Silicon Solar Photovoltaic Modules,” Appl. Sci., Vol.8, 1396, 2018.
  63. [63] F. Pagnanelli, E. Moscardini, G. Granata, T. Abo Atia, P. Altimari, T. Havlik, and L. Toro, “Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies,” Waste Management, Vol.59, pp. 422-431, 2017.
  64. [64] G. Granata, F. Pagnanelli, E. Moscardini, T. Havlik, and L. Toro, “Recycling of photovoltaic panels by physical operations,” Solar Energy Materials and Solar Cells, Vol.123, pp. 239-248, 2014.
  65. [65] R. Deng, N. L. Chang, Z. Ouyang, and C. M. Chong, “A techno-economic review of silicon photovoltaic module recycling,” Renew Sustain. Energ. Rev., Vol.109, pp. 532-550, 2019.
  66. [66] K. Komoto, J. S. Lee, J. Zhang, D. Ravikumar, P. Sinha, A. Wade, and G. Heath, “End-of-life management of photovoltaic panels: trends in PV module recycling technologies,” National Renewable Energy Lab. (NREL), Golden, CO (United States), 2018.
  67. [67] Z. Zhang, B. Sun, J. Yang, Y. Wei, and S. He, “Electrostatic separation for recycling silver, silicon and polyethylene terephthalate from waste photovoltaic cells,” Modern Physics Letters B, Vol.31, No.11, 1750087, 2017.
  68. [68] L. G. Zhang and Z. M. Xu, “Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition,” Environ. Sci. Technol., Vol.50, No.17, pp. 9242-9250, 2016.
  69. [69] S. M. Nevala, J. Hamuyuni, T. Junnila, T. Sirviö, S. Eisert, B. P. Wilson, R. Serna-Guerrero, and M. Lundström, “Electro-hydraulic fragmentation vs conventional crushing of photovoltaic panels – Impact on recycling,” Waste Management, Vol.87, pp. 43-50, 2019.
  70. [70] J. K. Lee, J. S. Lee, Y. S. Ahn, G. H. Kang, H. E. Song, M. G. Kang, Y. H. Kim, and C. H. Cho, “Simple pretreatment processes for successful reclamation and remanufacturing of crystalline silicon solar cells,” Progress in Photovoltaics: Research and Applications, Vol.26, No.3, pp. 179-187, 2018.
  71. [71] W. H. Huang, W. J. Shin, L. Wang, W. C. Sun, and M. Tao, “Strategy and technology to recycle wafer-silicon solar modules,” Solar Energy, Vol.144, pp. 22-31, 2017.
  72. [72] V. Fiandra, L. Sannino, C. Andreozzi, and G. Graditi, “End-of-life of silicon PV panels: A sustainable materials recovery process,” Waste Management, Vol.84, pp. 91-101, 2019.
  73. [73] T. Doi, I. Tsuda, H. Unagida, A. Murata, K. Sakuta, and K. Kurokawa, “Experimental study on PV module recycling with organic solvent method,” Solar Energy Materials and Solar Cells, Vol.67, Nos.1-4, pp. 397-403, 2001.
  74. [74] Y. Kim and J. Lee, “Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent,” Solar energy materials and solar cells, Vol.98, pp. 317-322, 2012.
  75. [75] M. Vellini, M. Gambini, and V. Prattella, “Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels,” Energy, Vol.138, pp. 1099-1111, 2017.
  76. [76] J. Shin, J. Park, and N. Park, “A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers,” Solar Energy Materials and Solar Cells, Vol.162, pp. 1-6, 2017.
  77. [77] A. Mecucci and K. Scott, “Leaching and electrochemical recovery of copper, lead and tin from scrap printed circuit boards,” J. Chem. Technol. Biotechnol., Vol.77, No.4, pp. 449-457, 2002.
  78. [78] H. K. Salim, R. A. Stewart, O. Sahin, and M. Dudley, “Drivers, barriers and enablers to end-of-life management of solar photovoltaic and battery energy storage systems: A systematic literature review,” J. of Cleaner Production, Vol.211, pp. 537-554, 2019.
  79. [79] S. Mahmoudi, N. Huda, Z. Alavi, M. T. Islam, and M. Behnia, “End-of-life photovoltaic modules: A systematic quantitative literature review,” Resour Conserv Recycling, Vol.146, pp. 1-16, 2019.
  80. [80] Y. Xu, J. Li, Q. Tan, A. L. Peters, and C. Yang, “Global status of recycling waste solar panels: A review,” Waste Management, Vol.75, pp. 450-458, 2018.
  81. [81] D. Sica, O. Malandrino, S. Supino, M. Testa, and M. C. Lucchetti, “Management of end-of-life photovoltaic panels as a step towards a circular economy,” Renew Sustain Energ. Rev., Vol.82, pp. 2934-2945, 2018.
  82. [82] O. Velázquez-Martínez, J. Valio, A. Santasalo-Aarnio, M. Reuter, and R. Serna-Guerrero, “A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective,” Batteries, Vol.5, No.4, 68, 2019.
  83. [83] P. K. Choubey, K. S. Chung, M. Kim, J. Lee, and R. R. Srivastava, “Advance review on the exploitation of the prominent energy-storage element Lithium, Part II: From sea water and spent lithium ion batteries (LIBs),” Minerals Engineering, Vol.110, pp. 104-121, 2017.
  84. [84] P. Meshram, A. Mishra, Abhilash, and R. Sahu, “Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids–A review,” Chemosphere, Vol.242, 125291, 2020.
  85. [85] Y. Yao, M. Zhu, Z. Zhao, B. Tong, Y. Fan, and Z. Hua, “Hydrometallurgical Processes for Recycling Spent Lithium-Ion Batteries: A Critical Review,” ACS Sustain Chem. Eng., Vol.6, No.11, pp. 13611-13627, 2018.
  86. [86] B. Swain, “Recovery and recycling of lithium: A review,” Separation and Purification Technology, Vol.172, pp. 388-403, 2017.
  87. [87] R. Golmohammadzadeh, F. Faraji, and F. Rashchi, “Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review,” Resour. Conserv. Recycling, Vol.136, pp. 418-435, 2018.
  88. [88] C. Liu, J. Lin, H. Cao, Y. Zhang, and Z. Sun, “Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review,” J. of Cleaner Production, Vol.228, pp. 801-813, 2019.
  89. [89] X. L. Zeng, J. H. Li, and N. Singh, “Recycling of Spent Lithium-Ion Battery: A Critical Review,” Environ. Sci. Technol., Vol.44, No.10, pp. 1129-1165, 2014.
  90. [90] J. F. Paulino, N. G. Busnardo, and J. C. Afonso, “Recovery of valuable elements from spent Li-batteries,” J. hazard. Mat., Vol.150, No.3, pp. 843-849, 2008.
  91. [91] C. Hanisch, T. Loellhoeffel, J. Diekmann, K. J. Markley, W. Haselrieder, and A. Kwade, “Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes,” J. of Cleaner Production, Vol.108, pp. 301-311, 2015.
  92. [92] L. Sun and K. Qiu, “Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries,” Waste Management, Vol.32, No.8, pp. 1575-1582, 2012.
  93. [93] R. Guoxing et al., “Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO2-Al2O3 Slag System,” R. G. Reddy, P. Chaubal, P. C. Pistorius, and U. Pal (Eds.), “Advances in Molten Slags, Fluxes, and Salts: Proc. of the 10th International Conference on Molten Slags, Fluxes and Salts 2016,” pp. 211-218, Springer, 2016.
  94. [94] L. Li, L. Zhai, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine, “Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process,” J. Power Sources, Vol.262, pp. 380-385, 2014.
  95. [95] D. A. Ferreira, L. M. Z. Prados, D. Majuste, and M. B. Mansur, “Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries,” J. Power Sources, Vol.187, No.1, pp. 238-246, 2009.
  96. [96] L. Chen, X. C. Tang, Y. Zhang, L. X. Li, Z. W. Zeng, and Y. Zhang, “Process for the recovery of cobalt oxalate from spent lithium-ion batteries,” Hydrometallurgy, Vol.108, pp. 80-86, 2011.
  97. [97] E. Rudnik, M. Pierzynka, and P. Handzlik, “Ammoniacal leaching and recovery of copper from alloyed low-grade e-waste,” J. Material Cycles and Waste Management, Vol.18, pp. 318-328, 2016.
  98. [98] A. Katsiapi, P. E. Tsakiridis, P. Oustadakis, and S. Agatzini-Leonardou, “Cobalt recovery from mixed Co-Mn hydroxide precipitates by ammonia-ammonium carbonate leaching,” Minerals Engineering, Vol.23, No.8, pp. 643-651, 2010.
  99. [99] D. Mishra, D. J. Kim, D. E. Ralph, J. G. Ahn, and Y. H. Rhee, “Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans,” Waste Management, Vol.28, No.2, pp. 333-338, 2008.
  100. [100] G. Zeng, S. Luo, X. Deng, L. Li, and C. Au, “Influence of silver ions on bioleaching of cobalt from spent lithium batteries,” Minerals Engineering, Vol.49, pp. 40-44, 2013.
  101. [101] B. Xin, D. Zhang, X. Zhang, Y. Xia, F. Wu, S. Chen, and L. Li, “Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria,” Bioresource Technology, Vol.100, No.24, pp. 6163-6169, 2009.
  102. [102] N. B. Horeh, S. Mousavi, and S. Shojaosadati, “Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger,” J. Power Sources, Vol.320, pp. 257-266, 2016.
  103. [103] J. Guan, Y. Li, Y. Guo, R. Su, G. Gao, H. Song, H. Yuan, B. Liang, and Z. Guo, “Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries.” ACS Sustain Chem Eng, Vol.5, No.1, pp. 1026-1032, 2017.
  104. [104] L. Zhang, W. Guo, J. Peng, J. Li, G. Lin, and X. Yu, “Comparison of ultrasonic-assisted and regular leaching of germanium from by-product of zinc metallurgy,” Ultrasonics sonochemistry, Vol.31, pp. 143-149, 2016.
  105. [105] F. Wang, R. Sun, J. Xu, Z. Chen, and M. Kang, “Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction,” RSC Advances, Vol.6, No.88, pp. 85303-85311, 2016.
  106. [106] S. H. Joo, D. Shin, C. H. Oh, J. P. Wang, and S. M. Shin, “Extraction of manganese by alkyl monocarboxylic acid in a mixed extractant from a leaching solution of spent lithium-ion battery ternary cathodic material,” J. Power Sources, Vol.305, pp. 175-181, 2016.
  107. [107] J. Kang, G. Senanayake, J. Sohn, and S. M. Shin, “Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272,” Hydrometallurgy, Vol.100 Nos.3-4, pp. 168-171, 2010.
  108. [108] A. K. Jha, M. K. Jha, A. Kumari, S. K. Sahu, V. Kumar, and B. D. Pandey, “Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant,” Separation and Purification Technology, Vol.104, pp. 160-166, 2013.
  109. [109] E. Gratz, Q. Sa, D. Apelian, and Y. Wang, “A closed loop process for recycling spent lithium ion batteries,” J. Power Sources, Vol.262, pp. 255-262, 2014.
  110. [110] L. Yang and G. Xi, “Preparation and Electrochemical Performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 Cathode Materials for Lithium-ion Batteries from Spent Mixed Alkaline Batteries,” J. Electronic Materials, Vol.45, pp. 301-306, 2016.
  111. [111] L. Li, R. Chen, F. Sun, F. Wu, and J. Liu, “Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process,” Hydrometallurgy, Vol.108, Nos.3-4, pp. 220-225, 2011.
  112. [112] L. Yao, H. Yao, G. Xi, and Y. Feng, “Recycling and synthesis of LiNi1/3 Co1/3 Mn1/3 O2 from waste lithium ion batteries using D,L-malic acid,” RSC Advances, Vol.6, No.22, pp. 17947-17954, 2016.
  113. [113] M. A. Pellow, H. Ambrose, D. Mulvaney, R. Betita, and S. Shaw, “Research gaps in environmental life cycle assessments of lithium ion batteries for grid-scale stationary energy storage systems: End-of-life options and other issues,” Sustainable Materials and Technologies, Vol.23, e00120, 2020.
  114. [114] M. A. Cusenza, S. Bobba, F. Ardente, M. Cellura, and F. D. Persio, “Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles,” J. of Cleaner Production, Vol.215, pp. 634-649, 2019.
  115. [115] S. P. Zhao and F. Q. You, “Comparative life-cycle assessment of Li-ion batteries through process-based and integrated hybrid approaches,” ACS Sustain Chem. Eng., Vol.7, No.5, pp. 5082-5094, 2019.
  116. [116] A. Heiho, Y. Kanematsu, M. Nagase, S. Murakami, C. Tokoro, and Y. Kikuchi, “Life cycle assessment of resource recovery from waste electrical and electronic equipment: A case study of Tantalum recovery by chain-using drum-typed impact mill,” Kagaku Kogaku Ronbunshu, Vol.45, No.6, pp. 244-252, 2019.
  117. [117] Y. Kishita, E. Kunii, S. Fukushige, Y. Umeda, and J. Fujimoto, “Scenario Analysis of Global Resource Circulation with Traceability Index Targeting Sustainable Manufacturing,” Int. J. Automation Technol., Vol.3, No.1, pp. 3-10, 2009.
  118. [118] M. Matsumoto, N. Mishima, and S. Kondoh, “Tele-Inverse Manufacturing – An International E-Waste Recycling Proposal,” Int. J. Automation Technol., Vol.3, No.1, pp. 11-18, 2009.
  119. [119] S. Okumura, Y. Matsumoto, Y. Hatanaka, and K. Ogohara, “Simultaneous Evaluation of Environmental Impact and Incurred Cost on Selection of End-Of-Life Products Recovery Options,” Int. J. Automation Technol., Vol.10, No.5, pp. 699-707, 2016.
  120. [120] S. Fukushige, Y. Inoue, K. Tonoike, and Y. Umeda, “Design Methodology for Modularity Based on Life Cycle Scenario,” Int. J. Automation Technol., Vol.3, No.1, pp. 40-48, 2009.
  121. [121] Y. Kikuchi, M. Hirao, H. Sugiyama, S. Papadokonstantakis, K. Hungerbühler, T. Ookubo, and A. Sasaki, “Design of recycling system for poly (methyl methacrylate) (PMMA), Part 2: Process hazards and material flow analysis,” Int. J. Life Cycle Assess., Vol.19, No.2, pp. 307-319, 2014.
  122. [122] Y. Kikuchi, M. Hirao, T. Ookubo, and A. Sasaki, “Design of Recycling System for Poly (Methyl Methacrylate) (PMMA) Part 1: Recycling Scenario Analysis,” Int. J. Life Cycle Assess., Vol.19, No.1, pp. 120-129, 2014.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jan. 19, 2025