@inproceedings{hu-etal-2017-inference,
title = "Inference of Fine-Grained Event Causality from Blogs and Films",
author = "Hu, Zhichao and
Rahimtoroghi, Elahe and
Walker, Marilyn",
editor = "Caselli, Tommaso and
Miller, Ben and
van Erp, Marieke and
Vossen, Piek and
Palmer, Martha and
Hovy, Eduard and
Mitamura, Teruko and
Caswell, David",
booktitle = "Proceedings of the Events and Stories in the News Workshop",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2708/",
doi = "10.18653/v1/W17-2708",
pages = "52--58",
abstract = "Human understanding of narrative is mainly driven by reasoning about causal relations between events and thus recognizing them is a key capability for computational models of language understanding. Computational work in this area has approached this via two different routes: by focusing on acquiring a knowledge base of common causal relations between events, or by attempting to understand a particular story or macro-event, along with its storyline. In this position paper, we focus on knowledge acquisition approach and claim that newswire is a relatively poor source for learning fine-grained causal relations between everyday events. We describe experiments using an unsupervised method to learn causal relations between events in the narrative genres of first-person narratives and film scene descriptions. We show that our method learns fine-grained causal relations, judged by humans as likely to be causal over 80{\%} of the time. We also demonstrate that the learned event pairs do not exist in publicly available event-pair datasets extracted from newswire."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hu-etal-2017-inference">
<titleInfo>
<title>Inference of Fine-Grained Event Causality from Blogs and Films</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhichao</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elahe</namePart>
<namePart type="family">Rahimtoroghi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Events and Stories in the News Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Caselli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ben</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marieke</namePart>
<namePart type="family">van Erp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piek</namePart>
<namePart type="family">Vossen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teruko</namePart>
<namePart type="family">Mitamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Caswell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Human understanding of narrative is mainly driven by reasoning about causal relations between events and thus recognizing them is a key capability for computational models of language understanding. Computational work in this area has approached this via two different routes: by focusing on acquiring a knowledge base of common causal relations between events, or by attempting to understand a particular story or macro-event, along with its storyline. In this position paper, we focus on knowledge acquisition approach and claim that newswire is a relatively poor source for learning fine-grained causal relations between everyday events. We describe experiments using an unsupervised method to learn causal relations between events in the narrative genres of first-person narratives and film scene descriptions. We show that our method learns fine-grained causal relations, judged by humans as likely to be causal over 80% of the time. We also demonstrate that the learned event pairs do not exist in publicly available event-pair datasets extracted from newswire.</abstract>
<identifier type="citekey">hu-etal-2017-inference</identifier>
<identifier type="doi">10.18653/v1/W17-2708</identifier>
<location>
<url>https://aclanthology.org/W17-2708/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>52</start>
<end>58</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Inference of Fine-Grained Event Causality from Blogs and Films
%A Hu, Zhichao
%A Rahimtoroghi, Elahe
%A Walker, Marilyn
%Y Caselli, Tommaso
%Y Miller, Ben
%Y van Erp, Marieke
%Y Vossen, Piek
%Y Palmer, Martha
%Y Hovy, Eduard
%Y Mitamura, Teruko
%Y Caswell, David
%S Proceedings of the Events and Stories in the News Workshop
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F hu-etal-2017-inference
%X Human understanding of narrative is mainly driven by reasoning about causal relations between events and thus recognizing them is a key capability for computational models of language understanding. Computational work in this area has approached this via two different routes: by focusing on acquiring a knowledge base of common causal relations between events, or by attempting to understand a particular story or macro-event, along with its storyline. In this position paper, we focus on knowledge acquisition approach and claim that newswire is a relatively poor source for learning fine-grained causal relations between everyday events. We describe experiments using an unsupervised method to learn causal relations between events in the narrative genres of first-person narratives and film scene descriptions. We show that our method learns fine-grained causal relations, judged by humans as likely to be causal over 80% of the time. We also demonstrate that the learned event pairs do not exist in publicly available event-pair datasets extracted from newswire.
%R 10.18653/v1/W17-2708
%U https://aclanthology.org/W17-2708/
%U https://doi.org/10.18653/v1/W17-2708
%P 52-58
Markdown (Informal)
[Inference of Fine-Grained Event Causality from Blogs and Films](https://aclanthology.org/W17-2708/) (Hu et al., EventStory 2017)
ACL