@inproceedings{lund-etal-2019-automatic,
title = "Automatic Evaluation of Local Topic Quality",
author = "Lund, Jeffrey and
Armstrong, Piper and
Fearn, Wilson and
Cowley, Stephen and
Byun, Courtni and
Boyd-Graber, Jordan and
Seppi, Kevin",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1076/",
doi = "10.18653/v1/P19-1076",
pages = "788--796",
abstract = "Topic models are typically evaluated with respect to the global topic distributions that they generate, using metrics such as coherence, but without regard to local (token-level) topic assignments. Token-level assignments are important for downstream tasks such as classification. Even recent models, which aim to improve the quality of these token-level topic assignments, have been evaluated only with respect to global metrics. We propose a task designed to elicit human judgments of token-level topic assignments. We use a variety of topic model types and parameters and discover that global metrics agree poorly with human assignments. Since human evaluation is expensive we propose a variety of automated metrics to evaluate topic models at a local level. Finally, we correlate our proposed metrics with human judgments from the task on several datasets. We show that an evaluation based on the percent of topic switches correlates most strongly with human judgment of local topic quality. We suggest that this new metric, which we call consistency, be adopted alongside global metrics such as topic coherence when evaluating new topic models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lund-etal-2019-automatic">
<titleInfo>
<title>Automatic Evaluation of Local Topic Quality</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeffrey</namePart>
<namePart type="family">Lund</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piper</namePart>
<namePart type="family">Armstrong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wilson</namePart>
<namePart type="family">Fearn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Cowley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Courtni</namePart>
<namePart type="family">Byun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Seppi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topic models are typically evaluated with respect to the global topic distributions that they generate, using metrics such as coherence, but without regard to local (token-level) topic assignments. Token-level assignments are important for downstream tasks such as classification. Even recent models, which aim to improve the quality of these token-level topic assignments, have been evaluated only with respect to global metrics. We propose a task designed to elicit human judgments of token-level topic assignments. We use a variety of topic model types and parameters and discover that global metrics agree poorly with human assignments. Since human evaluation is expensive we propose a variety of automated metrics to evaluate topic models at a local level. Finally, we correlate our proposed metrics with human judgments from the task on several datasets. We show that an evaluation based on the percent of topic switches correlates most strongly with human judgment of local topic quality. We suggest that this new metric, which we call consistency, be adopted alongside global metrics such as topic coherence when evaluating new topic models.</abstract>
<identifier type="citekey">lund-etal-2019-automatic</identifier>
<identifier type="doi">10.18653/v1/P19-1076</identifier>
<location>
<url>https://aclanthology.org/P19-1076/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>788</start>
<end>796</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Evaluation of Local Topic Quality
%A Lund, Jeffrey
%A Armstrong, Piper
%A Fearn, Wilson
%A Cowley, Stephen
%A Byun, Courtni
%A Boyd-Graber, Jordan
%A Seppi, Kevin
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F lund-etal-2019-automatic
%X Topic models are typically evaluated with respect to the global topic distributions that they generate, using metrics such as coherence, but without regard to local (token-level) topic assignments. Token-level assignments are important for downstream tasks such as classification. Even recent models, which aim to improve the quality of these token-level topic assignments, have been evaluated only with respect to global metrics. We propose a task designed to elicit human judgments of token-level topic assignments. We use a variety of topic model types and parameters and discover that global metrics agree poorly with human assignments. Since human evaluation is expensive we propose a variety of automated metrics to evaluate topic models at a local level. Finally, we correlate our proposed metrics with human judgments from the task on several datasets. We show that an evaluation based on the percent of topic switches correlates most strongly with human judgment of local topic quality. We suggest that this new metric, which we call consistency, be adopted alongside global metrics such as topic coherence when evaluating new topic models.
%R 10.18653/v1/P19-1076
%U https://aclanthology.org/P19-1076/
%U https://doi.org/10.18653/v1/P19-1076
%P 788-796
Markdown (Informal)
[Automatic Evaluation of Local Topic Quality](https://aclanthology.org/P19-1076/) (Lund et al., ACL 2019)
ACL
- Jeffrey Lund, Piper Armstrong, Wilson Fearn, Stephen Cowley, Courtni Byun, Jordan Boyd-Graber, and Kevin Seppi. 2019. Automatic Evaluation of Local Topic Quality. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 788–796, Florence, Italy. Association for Computational Linguistics.