@inproceedings{linmei-etal-2019-heterogeneous,
title = "Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification",
author = "Linmei, Hu and
Yang, Tianchi and
Shi, Chuan and
Ji, Houye and
Li, Xiaoli",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1488/",
doi = "10.18653/v1/D19-1488",
pages = "4821--4830",
abstract = "Short text classification has found rich and critical applications in news and tweet tagging to help users find relevant information. Due to lack of labeled training data in many practical use cases, there is a pressing need for studying semi-supervised short text classification. Most existing studies focus on long texts and achieve unsatisfactory performance on short texts due to the sparsity and limited labeled data. In this paper, we propose a novel heterogeneous graph neural network based method for semi-supervised short text classification, leveraging full advantage of few labeled data and large unlabeled data through information propagation along the graph. In particular, we first present a flexible HIN (heterogeneous information network) framework for modeling the short texts, which can integrate any type of additional information as well as capture their relations to address the semantic sparsity. Then, we propose Heterogeneous Graph ATtention networks (HGAT) to embed the HIN for short text classification based on a dual-level attention mechanism, including node-level and type-level attentions. The attention mechanism can learn the importance of different neighboring nodes as well as the importance of different node (information) types to a current node. Extensive experimental results have demonstrated that our proposed model outperforms state-of-the-art methods across six benchmark datasets significantly."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="linmei-etal-2019-heterogeneous">
<titleInfo>
<title>Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hu</namePart>
<namePart type="family">Linmei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianchi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuan</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houye</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoli</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Short text classification has found rich and critical applications in news and tweet tagging to help users find relevant information. Due to lack of labeled training data in many practical use cases, there is a pressing need for studying semi-supervised short text classification. Most existing studies focus on long texts and achieve unsatisfactory performance on short texts due to the sparsity and limited labeled data. In this paper, we propose a novel heterogeneous graph neural network based method for semi-supervised short text classification, leveraging full advantage of few labeled data and large unlabeled data through information propagation along the graph. In particular, we first present a flexible HIN (heterogeneous information network) framework for modeling the short texts, which can integrate any type of additional information as well as capture their relations to address the semantic sparsity. Then, we propose Heterogeneous Graph ATtention networks (HGAT) to embed the HIN for short text classification based on a dual-level attention mechanism, including node-level and type-level attentions. The attention mechanism can learn the importance of different neighboring nodes as well as the importance of different node (information) types to a current node. Extensive experimental results have demonstrated that our proposed model outperforms state-of-the-art methods across six benchmark datasets significantly.</abstract>
<identifier type="citekey">linmei-etal-2019-heterogeneous</identifier>
<identifier type="doi">10.18653/v1/D19-1488</identifier>
<location>
<url>https://aclanthology.org/D19-1488/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>4821</start>
<end>4830</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification
%A Linmei, Hu
%A Yang, Tianchi
%A Shi, Chuan
%A Ji, Houye
%A Li, Xiaoli
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F linmei-etal-2019-heterogeneous
%X Short text classification has found rich and critical applications in news and tweet tagging to help users find relevant information. Due to lack of labeled training data in many practical use cases, there is a pressing need for studying semi-supervised short text classification. Most existing studies focus on long texts and achieve unsatisfactory performance on short texts due to the sparsity and limited labeled data. In this paper, we propose a novel heterogeneous graph neural network based method for semi-supervised short text classification, leveraging full advantage of few labeled data and large unlabeled data through information propagation along the graph. In particular, we first present a flexible HIN (heterogeneous information network) framework for modeling the short texts, which can integrate any type of additional information as well as capture their relations to address the semantic sparsity. Then, we propose Heterogeneous Graph ATtention networks (HGAT) to embed the HIN for short text classification based on a dual-level attention mechanism, including node-level and type-level attentions. The attention mechanism can learn the importance of different neighboring nodes as well as the importance of different node (information) types to a current node. Extensive experimental results have demonstrated that our proposed model outperforms state-of-the-art methods across six benchmark datasets significantly.
%R 10.18653/v1/D19-1488
%U https://aclanthology.org/D19-1488/
%U https://doi.org/10.18653/v1/D19-1488
%P 4821-4830
Markdown (Informal)
[Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification](https://aclanthology.org/D19-1488/) (Linmei et al., EMNLP-IJCNLP 2019)
ACL