@inproceedings{tan-etal-2023-reconstruct,
title = "Reconstruct Before Summarize: An Efficient Two-Step Framework for Condensing and Summarizing Meeting Transcripts",
author = "Tan, Haochen and
Wu, Han and
Shao, Wei and
Zhang, Xinyun and
Zhan, Mingjie and
Hou, Zhaohui and
Liang, Ding and
Song, Linqi",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.812/",
doi = "10.18653/v1/2023.emnlp-main.812",
pages = "13128--13141",
abstract = "Meetings typically involve multiple participants and lengthy conversations, resulting in redundant and trivial content. To overcome these challenges, we propose a two-step framework, Reconstruct before Summarize (RbS), for effective and efficient meeting summarization. RbS first leverages a self-supervised paradigm to annotate essential contents by reconstructing the meeting transcripts. Secondly, we propose a relative positional bucketing (RPB) algorithm to equip (conventional) summarization models to generate the summary. Despite the additional reconstruction process, our proposed RPB significantly compresses the input, leading to faster processing and reduced memory consumption compared to traditional summarization methods. We validate the effectiveness and efficiency of our method through extensive evaluations and analyses. On two meeting summarization datasets, AMI and ICSI, our approach outperforms previous state-of-the-art approaches without relying on large-scale pre-training or expert-grade annotating tools."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tan-etal-2023-reconstruct">
<titleInfo>
<title>Reconstruct Before Summarize: An Efficient Two-Step Framework for Condensing and Summarizing Meeting Transcripts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haochen</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyun</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingjie</namePart>
<namePart type="family">Zhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhaohui</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ding</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linqi</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Meetings typically involve multiple participants and lengthy conversations, resulting in redundant and trivial content. To overcome these challenges, we propose a two-step framework, Reconstruct before Summarize (RbS), for effective and efficient meeting summarization. RbS first leverages a self-supervised paradigm to annotate essential contents by reconstructing the meeting transcripts. Secondly, we propose a relative positional bucketing (RPB) algorithm to equip (conventional) summarization models to generate the summary. Despite the additional reconstruction process, our proposed RPB significantly compresses the input, leading to faster processing and reduced memory consumption compared to traditional summarization methods. We validate the effectiveness and efficiency of our method through extensive evaluations and analyses. On two meeting summarization datasets, AMI and ICSI, our approach outperforms previous state-of-the-art approaches without relying on large-scale pre-training or expert-grade annotating tools.</abstract>
<identifier type="citekey">tan-etal-2023-reconstruct</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.812</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.812/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>13128</start>
<end>13141</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reconstruct Before Summarize: An Efficient Two-Step Framework for Condensing and Summarizing Meeting Transcripts
%A Tan, Haochen
%A Wu, Han
%A Shao, Wei
%A Zhang, Xinyun
%A Zhan, Mingjie
%A Hou, Zhaohui
%A Liang, Ding
%A Song, Linqi
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F tan-etal-2023-reconstruct
%X Meetings typically involve multiple participants and lengthy conversations, resulting in redundant and trivial content. To overcome these challenges, we propose a two-step framework, Reconstruct before Summarize (RbS), for effective and efficient meeting summarization. RbS first leverages a self-supervised paradigm to annotate essential contents by reconstructing the meeting transcripts. Secondly, we propose a relative positional bucketing (RPB) algorithm to equip (conventional) summarization models to generate the summary. Despite the additional reconstruction process, our proposed RPB significantly compresses the input, leading to faster processing and reduced memory consumption compared to traditional summarization methods. We validate the effectiveness and efficiency of our method through extensive evaluations and analyses. On two meeting summarization datasets, AMI and ICSI, our approach outperforms previous state-of-the-art approaches without relying on large-scale pre-training or expert-grade annotating tools.
%R 10.18653/v1/2023.emnlp-main.812
%U https://aclanthology.org/2023.emnlp-main.812/
%U https://doi.org/10.18653/v1/2023.emnlp-main.812
%P 13128-13141
Markdown (Informal)
[Reconstruct Before Summarize: An Efficient Two-Step Framework for Condensing and Summarizing Meeting Transcripts](https://aclanthology.org/2023.emnlp-main.812/) (Tan et al., EMNLP 2023)
ACL