@inproceedings{maroudas-etal-2022-legal,
title = "Legal-Tech Open Diaries: Lesson learned on how to develop and deploy light-weight models in the era of humongous Language Models",
author = "Maroudas, Stelios and
Legkas, Sotiris and
Malakasiotis, Prodromos and
Chalkidis, Ilias",
editor = "Aletras, Nikolaos and
Chalkidis, Ilias and
Barrett, Leslie and
Goanț{\u{a}}, C{\u{a}}t{\u{a}}lina and
Preoțiuc-Pietro, Daniel",
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nllp-1.8/",
doi = "10.18653/v1/2022.nllp-1.8",
pages = "88--110",
abstract = "In the era of billion-parameter-sized Language Models (LMs), start-ups have to follow trends and adapt their technology accordingly. Nonetheless, there are open challenges since the development and deployment of large models comes with a need for high computational resources and has economical consequences. In this work, we follow the steps of the R{\&}D group of a modern legal-tech start-up and present important insights on model development and deployment. We start from ground zero by pre-training multiple domain-specific multi-lingual LMs which are a better fit to contractual and regulatory text compared to the available alternatives (XLM-R). We present benchmark results of such models in a half-public half-private legal benchmark comprising 5 downstream tasks showing the impact of larger model size. Lastly, we examine the impact of a full-scale pipeline for model compression which includes: a) Parameter Pruning, b) Knowledge Distillation, and c) Quantization: The resulting models are much more efficient without sacrificing performance at large."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maroudas-etal-2022-legal">
<titleInfo>
<title>Legal-Tech Open Diaries: Lesson learned on how to develop and deploy light-weight models in the era of humongous Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Maroudas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sotiris</namePart>
<namePart type="family">Legkas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prodromos</namePart>
<namePart type="family">Malakasiotis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Natural Legal Language Processing Workshop 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Aletras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leslie</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cătălina</namePart>
<namePart type="family">Goanță</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preoțiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the era of billion-parameter-sized Language Models (LMs), start-ups have to follow trends and adapt their technology accordingly. Nonetheless, there are open challenges since the development and deployment of large models comes with a need for high computational resources and has economical consequences. In this work, we follow the steps of the R&D group of a modern legal-tech start-up and present important insights on model development and deployment. We start from ground zero by pre-training multiple domain-specific multi-lingual LMs which are a better fit to contractual and regulatory text compared to the available alternatives (XLM-R). We present benchmark results of such models in a half-public half-private legal benchmark comprising 5 downstream tasks showing the impact of larger model size. Lastly, we examine the impact of a full-scale pipeline for model compression which includes: a) Parameter Pruning, b) Knowledge Distillation, and c) Quantization: The resulting models are much more efficient without sacrificing performance at large.</abstract>
<identifier type="citekey">maroudas-etal-2022-legal</identifier>
<identifier type="doi">10.18653/v1/2022.nllp-1.8</identifier>
<location>
<url>https://aclanthology.org/2022.nllp-1.8/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>88</start>
<end>110</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Legal-Tech Open Diaries: Lesson learned on how to develop and deploy light-weight models in the era of humongous Language Models
%A Maroudas, Stelios
%A Legkas, Sotiris
%A Malakasiotis, Prodromos
%A Chalkidis, Ilias
%Y Aletras, Nikolaos
%Y Chalkidis, Ilias
%Y Barrett, Leslie
%Y Goanță, Cătălina
%Y Preoțiuc-Pietro, Daniel
%S Proceedings of the Natural Legal Language Processing Workshop 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F maroudas-etal-2022-legal
%X In the era of billion-parameter-sized Language Models (LMs), start-ups have to follow trends and adapt their technology accordingly. Nonetheless, there are open challenges since the development and deployment of large models comes with a need for high computational resources and has economical consequences. In this work, we follow the steps of the R&D group of a modern legal-tech start-up and present important insights on model development and deployment. We start from ground zero by pre-training multiple domain-specific multi-lingual LMs which are a better fit to contractual and regulatory text compared to the available alternatives (XLM-R). We present benchmark results of such models in a half-public half-private legal benchmark comprising 5 downstream tasks showing the impact of larger model size. Lastly, we examine the impact of a full-scale pipeline for model compression which includes: a) Parameter Pruning, b) Knowledge Distillation, and c) Quantization: The resulting models are much more efficient without sacrificing performance at large.
%R 10.18653/v1/2022.nllp-1.8
%U https://aclanthology.org/2022.nllp-1.8/
%U https://doi.org/10.18653/v1/2022.nllp-1.8
%P 88-110
Markdown (Informal)
[Legal-Tech Open Diaries: Lesson learned on how to develop and deploy light-weight models in the era of humongous Language Models](https://aclanthology.org/2022.nllp-1.8/) (Maroudas et al., NLLP 2022)
ACL