@inproceedings{gubelmann-etal-2022-means,
title = "On What it Means to Pay Your Fair Share: Towards Automatically Mapping Different Conceptions of Tax Justice in Legal Research Literature",
author = "Gubelmann, Reto and
Hongler, Peter and
Margadant, Elina and
Handschuh, Siegfried",
editor = "Aletras, Nikolaos and
Chalkidis, Ilias and
Barrett, Leslie and
Goanț{\u{a}}, C{\u{a}}t{\u{a}}lina and
Preoțiuc-Pietro, Daniel",
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nllp-1.2/",
doi = "10.18653/v1/2022.nllp-1.2",
pages = "12--30",
abstract = "In this article, we explore the potential and challenges of applying transformer-based pre-trained language models (PLMs) and statistical methods to a particularly challenging, yet highly important and largely uncharted domain: normative discussions in tax law research. On our conviction, the role of NLP in this essentially contested territory is to make explicit implicit normative assumptions, and to foster debates across ideological divides. To this goal, we propose the first steps towards a method that automatically labels normative statements in tax law research, and that suggests the normative background of these statements. Our results are encouraging, but it is clear that there is still room for improvement."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gubelmann-etal-2022-means">
<titleInfo>
<title>On What it Means to Pay Your Fair Share: Towards Automatically Mapping Different Conceptions of Tax Justice in Legal Research Literature</title>
</titleInfo>
<name type="personal">
<namePart type="given">Reto</namePart>
<namePart type="family">Gubelmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Hongler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elina</namePart>
<namePart type="family">Margadant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siegfried</namePart>
<namePart type="family">Handschuh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Natural Legal Language Processing Workshop 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Aletras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leslie</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cătălina</namePart>
<namePart type="family">Goanță</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preoțiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this article, we explore the potential and challenges of applying transformer-based pre-trained language models (PLMs) and statistical methods to a particularly challenging, yet highly important and largely uncharted domain: normative discussions in tax law research. On our conviction, the role of NLP in this essentially contested territory is to make explicit implicit normative assumptions, and to foster debates across ideological divides. To this goal, we propose the first steps towards a method that automatically labels normative statements in tax law research, and that suggests the normative background of these statements. Our results are encouraging, but it is clear that there is still room for improvement.</abstract>
<identifier type="citekey">gubelmann-etal-2022-means</identifier>
<identifier type="doi">10.18653/v1/2022.nllp-1.2</identifier>
<location>
<url>https://aclanthology.org/2022.nllp-1.2/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>12</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On What it Means to Pay Your Fair Share: Towards Automatically Mapping Different Conceptions of Tax Justice in Legal Research Literature
%A Gubelmann, Reto
%A Hongler, Peter
%A Margadant, Elina
%A Handschuh, Siegfried
%Y Aletras, Nikolaos
%Y Chalkidis, Ilias
%Y Barrett, Leslie
%Y Goanță, Cătălina
%Y Preoțiuc-Pietro, Daniel
%S Proceedings of the Natural Legal Language Processing Workshop 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F gubelmann-etal-2022-means
%X In this article, we explore the potential and challenges of applying transformer-based pre-trained language models (PLMs) and statistical methods to a particularly challenging, yet highly important and largely uncharted domain: normative discussions in tax law research. On our conviction, the role of NLP in this essentially contested territory is to make explicit implicit normative assumptions, and to foster debates across ideological divides. To this goal, we propose the first steps towards a method that automatically labels normative statements in tax law research, and that suggests the normative background of these statements. Our results are encouraging, but it is clear that there is still room for improvement.
%R 10.18653/v1/2022.nllp-1.2
%U https://aclanthology.org/2022.nllp-1.2/
%U https://doi.org/10.18653/v1/2022.nllp-1.2
%P 12-30
Markdown (Informal)
[On What it Means to Pay Your Fair Share: Towards Automatically Mapping Different Conceptions of Tax Justice in Legal Research Literature](https://aclanthology.org/2022.nllp-1.2/) (Gubelmann et al., NLLP 2022)
ACL