@inproceedings{bongard-etal-2022-legal,
title = "The Legal Argument Reasoning Task in Civil Procedure",
author = "Bongard, Leonard and
Held, Lena and
Habernal, Ivan",
editor = "Aletras, Nikolaos and
Chalkidis, Ilias and
Barrett, Leslie and
Goanț{\u{a}}, C{\u{a}}t{\u{a}}lina and
Preoțiuc-Pietro, Daniel",
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nllp-1.17/",
doi = "10.18653/v1/2022.nllp-1.17",
pages = "194--207",
abstract = "We present a new NLP task and dataset from the domain of the U.S. civil procedure. Each instance of the dataset consists of a general introduction to the case, a particular question, and a possible solution argument, accompanied by a detailed analysis of why the argument applies in that case. Since the dataset is based on a book aimed at law students, we believe that it represents a truly complex task for benchmarking modern legal language models. Our baseline evaluation shows that fine-tuning a legal transformer provides some advantage over random baseline models, but our analysis reveals that the actual ability to infer legal arguments remains a challenging open research question."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bongard-etal-2022-legal">
<titleInfo>
<title>The Legal Argument Reasoning Task in Civil Procedure</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leonard</namePart>
<namePart type="family">Bongard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lena</namePart>
<namePart type="family">Held</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Habernal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Natural Legal Language Processing Workshop 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Aletras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leslie</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cătălina</namePart>
<namePart type="family">Goanță</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preoțiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new NLP task and dataset from the domain of the U.S. civil procedure. Each instance of the dataset consists of a general introduction to the case, a particular question, and a possible solution argument, accompanied by a detailed analysis of why the argument applies in that case. Since the dataset is based on a book aimed at law students, we believe that it represents a truly complex task for benchmarking modern legal language models. Our baseline evaluation shows that fine-tuning a legal transformer provides some advantage over random baseline models, but our analysis reveals that the actual ability to infer legal arguments remains a challenging open research question.</abstract>
<identifier type="citekey">bongard-etal-2022-legal</identifier>
<identifier type="doi">10.18653/v1/2022.nllp-1.17</identifier>
<location>
<url>https://aclanthology.org/2022.nllp-1.17/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>194</start>
<end>207</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Legal Argument Reasoning Task in Civil Procedure
%A Bongard, Leonard
%A Held, Lena
%A Habernal, Ivan
%Y Aletras, Nikolaos
%Y Chalkidis, Ilias
%Y Barrett, Leslie
%Y Goanță, Cătălina
%Y Preoțiuc-Pietro, Daniel
%S Proceedings of the Natural Legal Language Processing Workshop 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F bongard-etal-2022-legal
%X We present a new NLP task and dataset from the domain of the U.S. civil procedure. Each instance of the dataset consists of a general introduction to the case, a particular question, and a possible solution argument, accompanied by a detailed analysis of why the argument applies in that case. Since the dataset is based on a book aimed at law students, we believe that it represents a truly complex task for benchmarking modern legal language models. Our baseline evaluation shows that fine-tuning a legal transformer provides some advantage over random baseline models, but our analysis reveals that the actual ability to infer legal arguments remains a challenging open research question.
%R 10.18653/v1/2022.nllp-1.17
%U https://aclanthology.org/2022.nllp-1.17/
%U https://doi.org/10.18653/v1/2022.nllp-1.17
%P 194-207
Markdown (Informal)
[The Legal Argument Reasoning Task in Civil Procedure](https://aclanthology.org/2022.nllp-1.17/) (Bongard et al., NLLP 2022)
ACL
- Leonard Bongard, Lena Held, and Ivan Habernal. 2022. The Legal Argument Reasoning Task in Civil Procedure. In Proceedings of the Natural Legal Language Processing Workshop 2022, pages 194–207, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.