@inproceedings{li-etal-2022-systematic,
title = "A Systematic Investigation of Commonsense Knowledge in Large Language Models",
author = "Li, Xiang Lorraine and
Kuncoro, Adhiguna and
Hoffmann, Jordan and
de Masson d{'}Autume, Cyprien and
Blunsom, Phil and
Nematzadeh, Aida",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.812/",
doi = "10.18653/v1/2022.emnlp-main.812",
pages = "11838--11855",
abstract = "Language models (LMs) trained on large amounts of data have shown impressive performance on many NLP tasks under the zero-shot and few-shot setup. Here we aim to better understand the extent to which such models learn commonsense knowledge {---} a critical component of many NLP applications. We conduct a systematic and rigorous zero-shot and few-shot commonsense evaluation of large pre-trained LMs, where we: (i) carefully control for the LMs' ability to exploit potential surface cues and annotation artefacts, and (ii) account for variations in performance that arise from factors that are not related to commonsense knowledge. Our findings highlight the limitations of pre-trained LMs in acquiring commonsense knowledge without task-specific supervision; furthermore, using larger models or few-shot evaluation is insufficient to achieve human-level commonsense performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2022-systematic">
<titleInfo>
<title>A Systematic Investigation of Commonsense Knowledge in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="given">Lorraine</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adhiguna</namePart>
<namePart type="family">Kuncoro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Hoffmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cyprien</namePart>
<namePart type="family">de Masson d’Autume</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aida</namePart>
<namePart type="family">Nematzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Language models (LMs) trained on large amounts of data have shown impressive performance on many NLP tasks under the zero-shot and few-shot setup. Here we aim to better understand the extent to which such models learn commonsense knowledge — a critical component of many NLP applications. We conduct a systematic and rigorous zero-shot and few-shot commonsense evaluation of large pre-trained LMs, where we: (i) carefully control for the LMs’ ability to exploit potential surface cues and annotation artefacts, and (ii) account for variations in performance that arise from factors that are not related to commonsense knowledge. Our findings highlight the limitations of pre-trained LMs in acquiring commonsense knowledge without task-specific supervision; furthermore, using larger models or few-shot evaluation is insufficient to achieve human-level commonsense performance.</abstract>
<identifier type="citekey">li-etal-2022-systematic</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.812</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.812/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>11838</start>
<end>11855</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Systematic Investigation of Commonsense Knowledge in Large Language Models
%A Li, Xiang Lorraine
%A Kuncoro, Adhiguna
%A Hoffmann, Jordan
%A de Masson d’Autume, Cyprien
%A Blunsom, Phil
%A Nematzadeh, Aida
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F li-etal-2022-systematic
%X Language models (LMs) trained on large amounts of data have shown impressive performance on many NLP tasks under the zero-shot and few-shot setup. Here we aim to better understand the extent to which such models learn commonsense knowledge — a critical component of many NLP applications. We conduct a systematic and rigorous zero-shot and few-shot commonsense evaluation of large pre-trained LMs, where we: (i) carefully control for the LMs’ ability to exploit potential surface cues and annotation artefacts, and (ii) account for variations in performance that arise from factors that are not related to commonsense knowledge. Our findings highlight the limitations of pre-trained LMs in acquiring commonsense knowledge without task-specific supervision; furthermore, using larger models or few-shot evaluation is insufficient to achieve human-level commonsense performance.
%R 10.18653/v1/2022.emnlp-main.812
%U https://aclanthology.org/2022.emnlp-main.812/
%U https://doi.org/10.18653/v1/2022.emnlp-main.812
%P 11838-11855
Markdown (Informal)
[A Systematic Investigation of Commonsense Knowledge in Large Language Models](https://aclanthology.org/2022.emnlp-main.812/) (Li et al., EMNLP 2022)
ACL
- Xiang Lorraine Li, Adhiguna Kuncoro, Jordan Hoffmann, Cyprien de Masson d’Autume, Phil Blunsom, and Aida Nematzadeh. 2022. A Systematic Investigation of Commonsense Knowledge in Large Language Models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 11838–11855, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.