@inproceedings{bogensperger-etal-2021-dreamdrug,
title = "{D}ream{D}rug - A crowdsourced {NER} dataset for detecting drugs in darknet markets",
author = "Bogensperger, Johannes and
Schlarb, Sven and
Hanbury, Allan and
Recski, G{\'a}bor",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wnut-1.17/",
doi = "10.18653/v1/2021.wnut-1.17",
pages = "137--157",
abstract = "We present DreamDrug, a crowdsourced dataset for detecting mentions of drugs in noisy user-generated item listings from darknet markets. Our dataset contains nearly 15,000 manually annotated drug entities in over 3,500 item listings scraped from the darknet market platform {\textquotedblleft}DreamMarket{\textquotedblright} in 2017. We also train and evaluate baseline models for detecting these entities, using contextual language models fine-tuned in a few-shot setting and on the full dataset, and examine the effect of pretraining on in-domain unannotated corpora."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bogensperger-etal-2021-dreamdrug">
<titleInfo>
<title>DreamDrug - A crowdsourced NER dataset for detecting drugs in darknet markets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Bogensperger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sven</namePart>
<namePart type="family">Schlarb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Allan</namePart>
<namePart type="family">Hanbury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gábor</namePart>
<namePart type="family">Recski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present DreamDrug, a crowdsourced dataset for detecting mentions of drugs in noisy user-generated item listings from darknet markets. Our dataset contains nearly 15,000 manually annotated drug entities in over 3,500 item listings scraped from the darknet market platform “DreamMarket” in 2017. We also train and evaluate baseline models for detecting these entities, using contextual language models fine-tuned in a few-shot setting and on the full dataset, and examine the effect of pretraining on in-domain unannotated corpora.</abstract>
<identifier type="citekey">bogensperger-etal-2021-dreamdrug</identifier>
<identifier type="doi">10.18653/v1/2021.wnut-1.17</identifier>
<location>
<url>https://aclanthology.org/2021.wnut-1.17/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>137</start>
<end>157</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DreamDrug - A crowdsourced NER dataset for detecting drugs in darknet markets
%A Bogensperger, Johannes
%A Schlarb, Sven
%A Hanbury, Allan
%A Recski, Gábor
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online
%F bogensperger-etal-2021-dreamdrug
%X We present DreamDrug, a crowdsourced dataset for detecting mentions of drugs in noisy user-generated item listings from darknet markets. Our dataset contains nearly 15,000 manually annotated drug entities in over 3,500 item listings scraped from the darknet market platform “DreamMarket” in 2017. We also train and evaluate baseline models for detecting these entities, using contextual language models fine-tuned in a few-shot setting and on the full dataset, and examine the effect of pretraining on in-domain unannotated corpora.
%R 10.18653/v1/2021.wnut-1.17
%U https://aclanthology.org/2021.wnut-1.17/
%U https://doi.org/10.18653/v1/2021.wnut-1.17
%P 137-157
Markdown (Informal)
[DreamDrug - A crowdsourced NER dataset for detecting drugs in darknet markets](https://aclanthology.org/2021.wnut-1.17/) (Bogensperger et al., WNUT 2021)
ACL