@inproceedings{basu-roy-chowdhury-etal-2021-adversarial,
title = "Adversarial Scrubbing of Demographic Information for Text Classification",
author = "Basu Roy Chowdhury, Somnath and
Ghosh, Sayan and
Li, Yiyuan and
Oliva, Junier and
Srivastava, Shashank and
Chaturvedi, Snigdha",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.43/",
doi = "10.18653/v1/2021.emnlp-main.43",
pages = "550--562",
abstract = "Contextual representations learned by language models can often encode undesirable attributes, like demographic associations of the users, while being trained for an unrelated target task. We aim to scrub such undesirable attributes and learn fair representations while maintaining performance on the target task. In this paper, we present an adversarial learning framework {\textquotedblleft}Adversarial Scrubber{\textquotedblright} (AdS), to debias contextual representations. We perform theoretical analysis to show that our framework converges without leaking demographic information under certain conditions. We extend previous evaluation techniques by evaluating debiasing performance using Minimum Description Length (MDL) probing. Experimental evaluations on 8 datasets show that AdS generates representations with minimal information about demographic attributes while being maximally informative about the target task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="basu-roy-chowdhury-etal-2021-adversarial">
<titleInfo>
<title>Adversarial Scrubbing of Demographic Information for Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Somnath</namePart>
<namePart type="family">Basu Roy Chowdhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sayan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiyuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junier</namePart>
<namePart type="family">Oliva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shashank</namePart>
<namePart type="family">Srivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Snigdha</namePart>
<namePart type="family">Chaturvedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Contextual representations learned by language models can often encode undesirable attributes, like demographic associations of the users, while being trained for an unrelated target task. We aim to scrub such undesirable attributes and learn fair representations while maintaining performance on the target task. In this paper, we present an adversarial learning framework “Adversarial Scrubber” (AdS), to debias contextual representations. We perform theoretical analysis to show that our framework converges without leaking demographic information under certain conditions. We extend previous evaluation techniques by evaluating debiasing performance using Minimum Description Length (MDL) probing. Experimental evaluations on 8 datasets show that AdS generates representations with minimal information about demographic attributes while being maximally informative about the target task.</abstract>
<identifier type="citekey">basu-roy-chowdhury-etal-2021-adversarial</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.43</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.43/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>550</start>
<end>562</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adversarial Scrubbing of Demographic Information for Text Classification
%A Basu Roy Chowdhury, Somnath
%A Ghosh, Sayan
%A Li, Yiyuan
%A Oliva, Junier
%A Srivastava, Shashank
%A Chaturvedi, Snigdha
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F basu-roy-chowdhury-etal-2021-adversarial
%X Contextual representations learned by language models can often encode undesirable attributes, like demographic associations of the users, while being trained for an unrelated target task. We aim to scrub such undesirable attributes and learn fair representations while maintaining performance on the target task. In this paper, we present an adversarial learning framework “Adversarial Scrubber” (AdS), to debias contextual representations. We perform theoretical analysis to show that our framework converges without leaking demographic information under certain conditions. We extend previous evaluation techniques by evaluating debiasing performance using Minimum Description Length (MDL) probing. Experimental evaluations on 8 datasets show that AdS generates representations with minimal information about demographic attributes while being maximally informative about the target task.
%R 10.18653/v1/2021.emnlp-main.43
%U https://aclanthology.org/2021.emnlp-main.43/
%U https://doi.org/10.18653/v1/2021.emnlp-main.43
%P 550-562
Markdown (Informal)
[Adversarial Scrubbing of Demographic Information for Text Classification](https://aclanthology.org/2021.emnlp-main.43/) (Basu Roy Chowdhury et al., EMNLP 2021)
ACL
- Somnath Basu Roy Chowdhury, Sayan Ghosh, Yiyuan Li, Junier Oliva, Shashank Srivastava, and Snigdha Chaturvedi. 2021. Adversarial Scrubbing of Demographic Information for Text Classification. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 550–562, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.