@inproceedings{martinc-etal-2020-discovery,
title = "Discovery Team at {S}em{E}val-2020 Task 1: Context-sensitive Embeddings Not Always Better than Static for Semantic Change Detection",
author = "Martinc, Matej and
Montariol, Syrielle and
Zosa, Elaine and
Pivovarova, Lidia",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.6/",
doi = "10.18653/v1/2020.semeval-1.6",
pages = "67--73",
abstract = "This paper describes the approaches used by the Discovery Team to solve SemEval-2020 Task 1 - Unsupervised Lexical Semantic Change Detection. The proposed method is based on clustering of BERT contextual embeddings, followed by a comparison of cluster distributions across time. The best results were obtained by an ensemble of this method and static Word2Vec embeddings. According to the official results, our approach proved the best for Latin in Subtask 2."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="martinc-etal-2020-discovery">
<titleInfo>
<title>Discovery Team at SemEval-2020 Task 1: Context-sensitive Embeddings Not Always Better than Static for Semantic Change Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matej</namePart>
<namePart type="family">Martinc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Syrielle</namePart>
<namePart type="family">Montariol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elaine</namePart>
<namePart type="family">Zosa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidia</namePart>
<namePart type="family">Pivovarova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the approaches used by the Discovery Team to solve SemEval-2020 Task 1 - Unsupervised Lexical Semantic Change Detection. The proposed method is based on clustering of BERT contextual embeddings, followed by a comparison of cluster distributions across time. The best results were obtained by an ensemble of this method and static Word2Vec embeddings. According to the official results, our approach proved the best for Latin in Subtask 2.</abstract>
<identifier type="citekey">martinc-etal-2020-discovery</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.6</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.6/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>67</start>
<end>73</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discovery Team at SemEval-2020 Task 1: Context-sensitive Embeddings Not Always Better than Static for Semantic Change Detection
%A Martinc, Matej
%A Montariol, Syrielle
%A Zosa, Elaine
%A Pivovarova, Lidia
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F martinc-etal-2020-discovery
%X This paper describes the approaches used by the Discovery Team to solve SemEval-2020 Task 1 - Unsupervised Lexical Semantic Change Detection. The proposed method is based on clustering of BERT contextual embeddings, followed by a comparison of cluster distributions across time. The best results were obtained by an ensemble of this method and static Word2Vec embeddings. According to the official results, our approach proved the best for Latin in Subtask 2.
%R 10.18653/v1/2020.semeval-1.6
%U https://aclanthology.org/2020.semeval-1.6/
%U https://doi.org/10.18653/v1/2020.semeval-1.6
%P 67-73
Markdown (Informal)
[Discovery Team at SemEval-2020 Task 1: Context-sensitive Embeddings Not Always Better than Static for Semantic Change Detection](https://aclanthology.org/2020.semeval-1.6/) (Martinc et al., SemEval 2020)
ACL