@inproceedings{peinelt-etal-2020-tbert,
title = "t{BERT}: Topic Models and {BERT} Joining Forces for Semantic Similarity Detection",
author = "Peinelt, Nicole and
Nguyen, Dong and
Liakata, Maria",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.630/",
doi = "10.18653/v1/2020.acl-main.630",
pages = "7047--7055",
abstract = "Semantic similarity detection is a fundamental task in natural language understanding. Adding topic information has been useful for previous feature-engineered semantic similarity models as well as neural models for other tasks. There is currently no standard way of combining topics with pretrained contextual representations such as BERT. We propose a novel topic-informed BERT-based architecture for pairwise semantic similarity detection and show that our model improves performance over strong neural baselines across a variety of English language datasets. We find that the addition of topics to BERT helps particularly with resolving domain-specific cases."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="peinelt-etal-2020-tbert">
<titleInfo>
<title>tBERT: Topic Models and BERT Joining Forces for Semantic Similarity Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicole</namePart>
<namePart type="family">Peinelt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Semantic similarity detection is a fundamental task in natural language understanding. Adding topic information has been useful for previous feature-engineered semantic similarity models as well as neural models for other tasks. There is currently no standard way of combining topics with pretrained contextual representations such as BERT. We propose a novel topic-informed BERT-based architecture for pairwise semantic similarity detection and show that our model improves performance over strong neural baselines across a variety of English language datasets. We find that the addition of topics to BERT helps particularly with resolving domain-specific cases.</abstract>
<identifier type="citekey">peinelt-etal-2020-tbert</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.630</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.630/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>7047</start>
<end>7055</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T tBERT: Topic Models and BERT Joining Forces for Semantic Similarity Detection
%A Peinelt, Nicole
%A Nguyen, Dong
%A Liakata, Maria
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F peinelt-etal-2020-tbert
%X Semantic similarity detection is a fundamental task in natural language understanding. Adding topic information has been useful for previous feature-engineered semantic similarity models as well as neural models for other tasks. There is currently no standard way of combining topics with pretrained contextual representations such as BERT. We propose a novel topic-informed BERT-based architecture for pairwise semantic similarity detection and show that our model improves performance over strong neural baselines across a variety of English language datasets. We find that the addition of topics to BERT helps particularly with resolving domain-specific cases.
%R 10.18653/v1/2020.acl-main.630
%U https://aclanthology.org/2020.acl-main.630/
%U https://doi.org/10.18653/v1/2020.acl-main.630
%P 7047-7055
Markdown (Informal)
[tBERT: Topic Models and BERT Joining Forces for Semantic Similarity Detection](https://aclanthology.org/2020.acl-main.630/) (Peinelt et al., ACL 2020)
ACL