@inproceedings{li-etal-2018-co,
title = "A Co-Attention Neural Network Model for Emotion Cause Analysis with Emotional Context Awareness",
author = "Li, Xiangju and
Song, Kaisong and
Feng, Shi and
Wang, Daling and
Zhang, Yifei",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1506/",
doi = "10.18653/v1/D18-1506",
pages = "4752--4757",
abstract = "Emotion cause analysis has been a key topic in natural language processing. Existing methods ignore the contexts around the emotion word which can provide an emotion cause clue. Meanwhile, the clauses in a document play different roles on stimulating a certain emotion, depending on their content relevance. Therefore, we propose a co-attention neural network model for emotion cause analysis with emotional context awareness. The method encodes the clauses with a co-attention based bi-directional long short-term memory into high-level input representations, which are further fed into a convolutional layer for emotion cause analysis. Experimental results show that our approach outperforms the state-of-the-art baseline methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2018-co">
<titleInfo>
<title>A Co-Attention Neural Network Model for Emotion Cause Analysis with Emotional Context Awareness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiangju</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaisong</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shi</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daling</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yifei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotion cause analysis has been a key topic in natural language processing. Existing methods ignore the contexts around the emotion word which can provide an emotion cause clue. Meanwhile, the clauses in a document play different roles on stimulating a certain emotion, depending on their content relevance. Therefore, we propose a co-attention neural network model for emotion cause analysis with emotional context awareness. The method encodes the clauses with a co-attention based bi-directional long short-term memory into high-level input representations, which are further fed into a convolutional layer for emotion cause analysis. Experimental results show that our approach outperforms the state-of-the-art baseline methods.</abstract>
<identifier type="citekey">li-etal-2018-co</identifier>
<identifier type="doi">10.18653/v1/D18-1506</identifier>
<location>
<url>https://aclanthology.org/D18-1506/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4752</start>
<end>4757</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Co-Attention Neural Network Model for Emotion Cause Analysis with Emotional Context Awareness
%A Li, Xiangju
%A Song, Kaisong
%A Feng, Shi
%A Wang, Daling
%A Zhang, Yifei
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F li-etal-2018-co
%X Emotion cause analysis has been a key topic in natural language processing. Existing methods ignore the contexts around the emotion word which can provide an emotion cause clue. Meanwhile, the clauses in a document play different roles on stimulating a certain emotion, depending on their content relevance. Therefore, we propose a co-attention neural network model for emotion cause analysis with emotional context awareness. The method encodes the clauses with a co-attention based bi-directional long short-term memory into high-level input representations, which are further fed into a convolutional layer for emotion cause analysis. Experimental results show that our approach outperforms the state-of-the-art baseline methods.
%R 10.18653/v1/D18-1506
%U https://aclanthology.org/D18-1506/
%U https://doi.org/10.18653/v1/D18-1506
%P 4752-4757
Markdown (Informal)
[A Co-Attention Neural Network Model for Emotion Cause Analysis with Emotional Context Awareness](https://aclanthology.org/D18-1506/) (Li et al., EMNLP 2018)
ACL