@inproceedings{bianchi-etal-2022-just,
title = "{\textquotedblleft}It`s Not Just Hate{\textquotedblright}: A Multi-Dimensional Perspective on Detecting Harmful Speech Online",
author = "Bianchi, Federico and
HIlls, Stefanie and
Rossini, Patricia and
Hovy, Dirk and
Tromble, Rebekah and
Tintarev, Nava",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.553/",
doi = "10.18653/v1/2022.emnlp-main.553",
pages = "8093--8099",
abstract = "Well-annotated data is a prerequisite for good Natural Language Processing models. Too often, though, annotation decisions are governed by optimizing time or annotator agreement. We make a case for nuanced efforts in an interdisciplinary setting for annotating offensive online speech. Detecting offensive content is rapidly becoming one of the most important real-world NLP tasks. However, most datasets use a single binary label, e.g., for hate or incivility, even though each concept is multi-faceted. This modeling choice severely limits nuanced insights, but also performance.We show that a more fine-grained multi-label approach to predicting incivility and hateful or intolerant content addresses both conceptual and performance issues.We release a novel dataset of over 40,000 tweets about immigration from the US and UK, annotated with six labels for different aspects of incivility and intolerance.Our dataset not only allows for a more nuanced understanding of harmful speech online, models trained on it also outperform or match performance on benchmark datasets"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bianchi-etal-2022-just">
<titleInfo>
<title>“It‘s Not Just Hate”: A Multi-Dimensional Perspective on Detecting Harmful Speech Online</title>
</titleInfo>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Bianchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefanie</namePart>
<namePart type="family">HIlls</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Rossini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebekah</namePart>
<namePart type="family">Tromble</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nava</namePart>
<namePart type="family">Tintarev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Well-annotated data is a prerequisite for good Natural Language Processing models. Too often, though, annotation decisions are governed by optimizing time or annotator agreement. We make a case for nuanced efforts in an interdisciplinary setting for annotating offensive online speech. Detecting offensive content is rapidly becoming one of the most important real-world NLP tasks. However, most datasets use a single binary label, e.g., for hate or incivility, even though each concept is multi-faceted. This modeling choice severely limits nuanced insights, but also performance.We show that a more fine-grained multi-label approach to predicting incivility and hateful or intolerant content addresses both conceptual and performance issues.We release a novel dataset of over 40,000 tweets about immigration from the US and UK, annotated with six labels for different aspects of incivility and intolerance.Our dataset not only allows for a more nuanced understanding of harmful speech online, models trained on it also outperform or match performance on benchmark datasets</abstract>
<identifier type="citekey">bianchi-etal-2022-just</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.553</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.553/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>8093</start>
<end>8099</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T “It‘s Not Just Hate”: A Multi-Dimensional Perspective on Detecting Harmful Speech Online
%A Bianchi, Federico
%A HIlls, Stefanie
%A Rossini, Patricia
%A Hovy, Dirk
%A Tromble, Rebekah
%A Tintarev, Nava
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F bianchi-etal-2022-just
%X Well-annotated data is a prerequisite for good Natural Language Processing models. Too often, though, annotation decisions are governed by optimizing time or annotator agreement. We make a case for nuanced efforts in an interdisciplinary setting for annotating offensive online speech. Detecting offensive content is rapidly becoming one of the most important real-world NLP tasks. However, most datasets use a single binary label, e.g., for hate or incivility, even though each concept is multi-faceted. This modeling choice severely limits nuanced insights, but also performance.We show that a more fine-grained multi-label approach to predicting incivility and hateful or intolerant content addresses both conceptual and performance issues.We release a novel dataset of over 40,000 tweets about immigration from the US and UK, annotated with six labels for different aspects of incivility and intolerance.Our dataset not only allows for a more nuanced understanding of harmful speech online, models trained on it also outperform or match performance on benchmark datasets
%R 10.18653/v1/2022.emnlp-main.553
%U https://aclanthology.org/2022.emnlp-main.553/
%U https://doi.org/10.18653/v1/2022.emnlp-main.553
%P 8093-8099
Markdown (Informal)
[“It’s Not Just Hate”: A Multi-Dimensional Perspective on Detecting Harmful Speech Online](https://aclanthology.org/2022.emnlp-main.553/) (Bianchi et al., EMNLP 2022)
ACL