@inproceedings{xin-etal-2021-n,
title = "N-ary Constituent Tree Parsing with Recursive Semi-{M}arkov Model",
author = "Xin, Xin and
Li, Jinlong and
Tan, Zeqi",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.205/",
doi = "10.18653/v1/2021.acl-long.205",
pages = "2631--2642",
abstract = "In this paper, we study the task of graph-based constituent parsing in the setting that binarization is not conducted as a pre-processing step, where a constituent tree may consist of nodes with more than two children. Previous graph-based methods on this setting typically generate hidden nodes with the dummy label inside the n-ary nodes, in order to transform the tree into a binary tree for prediction. The limitation is that the hidden nodes break the sibling relations of the n-ary node`s children. Consequently, the dependencies of such sibling constituents might not be accurately modeled and is being ignored. To solve this limitation, we propose a novel graph-based framework, which is called {\textquotedblleft}recursive semi-Markov model{\textquotedblright}. The main idea is to utilize 1-order semi-Markov model to predict the immediate children sequence of a constituent candidate, which then recursively serves as a child candidate of its parent. In this manner, the dependencies of sibling constituents can be described by 1-order transition features, which solves the above limitation. Through experiments, the proposed framework obtains the F1 of 95.92{\%} and 92.50{\%} on the datasets of PTB and CTB 5.1 respectively. Specially, the recursive semi-Markov model shows advantages in modeling nodes with more than two children, whose average F1 can be improved by 0.3-1.1 points in PTB and 2.3-6.8 points in CTB 5.1."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xin-etal-2021-n">
<titleInfo>
<title>N-ary Constituent Tree Parsing with Recursive Semi-Markov Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Xin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinlong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeqi</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we study the task of graph-based constituent parsing in the setting that binarization is not conducted as a pre-processing step, where a constituent tree may consist of nodes with more than two children. Previous graph-based methods on this setting typically generate hidden nodes with the dummy label inside the n-ary nodes, in order to transform the tree into a binary tree for prediction. The limitation is that the hidden nodes break the sibling relations of the n-ary node‘s children. Consequently, the dependencies of such sibling constituents might not be accurately modeled and is being ignored. To solve this limitation, we propose a novel graph-based framework, which is called “recursive semi-Markov model”. The main idea is to utilize 1-order semi-Markov model to predict the immediate children sequence of a constituent candidate, which then recursively serves as a child candidate of its parent. In this manner, the dependencies of sibling constituents can be described by 1-order transition features, which solves the above limitation. Through experiments, the proposed framework obtains the F1 of 95.92% and 92.50% on the datasets of PTB and CTB 5.1 respectively. Specially, the recursive semi-Markov model shows advantages in modeling nodes with more than two children, whose average F1 can be improved by 0.3-1.1 points in PTB and 2.3-6.8 points in CTB 5.1.</abstract>
<identifier type="citekey">xin-etal-2021-n</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.205</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.205/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>2631</start>
<end>2642</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T N-ary Constituent Tree Parsing with Recursive Semi-Markov Model
%A Xin, Xin
%A Li, Jinlong
%A Tan, Zeqi
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F xin-etal-2021-n
%X In this paper, we study the task of graph-based constituent parsing in the setting that binarization is not conducted as a pre-processing step, where a constituent tree may consist of nodes with more than two children. Previous graph-based methods on this setting typically generate hidden nodes with the dummy label inside the n-ary nodes, in order to transform the tree into a binary tree for prediction. The limitation is that the hidden nodes break the sibling relations of the n-ary node‘s children. Consequently, the dependencies of such sibling constituents might not be accurately modeled and is being ignored. To solve this limitation, we propose a novel graph-based framework, which is called “recursive semi-Markov model”. The main idea is to utilize 1-order semi-Markov model to predict the immediate children sequence of a constituent candidate, which then recursively serves as a child candidate of its parent. In this manner, the dependencies of sibling constituents can be described by 1-order transition features, which solves the above limitation. Through experiments, the proposed framework obtains the F1 of 95.92% and 92.50% on the datasets of PTB and CTB 5.1 respectively. Specially, the recursive semi-Markov model shows advantages in modeling nodes with more than two children, whose average F1 can be improved by 0.3-1.1 points in PTB and 2.3-6.8 points in CTB 5.1.
%R 10.18653/v1/2021.acl-long.205
%U https://aclanthology.org/2021.acl-long.205/
%U https://doi.org/10.18653/v1/2021.acl-long.205
%P 2631-2642
Markdown (Informal)
[N-ary Constituent Tree Parsing with Recursive Semi-Markov Model](https://aclanthology.org/2021.acl-long.205/) (Xin et al., ACL-IJCNLP 2021)
ACL
- Xin Xin, Jinlong Li, and Zeqi Tan. 2021. N-ary Constituent Tree Parsing with Recursive Semi-Markov Model. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 2631–2642, Online. Association for Computational Linguistics.