Knowledge Self-Adaptive Multi-Agent Learning
Logo des Repositoriums
 
Konferenzbeitrag

Knowledge Self-Adaptive Multi-Agent Learning

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

In this paper concepts of a starting Doctoral Dissertation are presented, discussing the question how agents constructed according to Organic Computing methodologies can autonomously identify Knowledge Sources and adapt them to their learning procedure. Achieving this, the fields of Multi-Agent Learning, Organic Computing, Transfer Learning, and Online Learning are combined to an unified architecture. The focus of the work is on the real-time evaluation of knowledge sources. In order to show the practical use case of such systems, the author presents two scenarios. The first, collaborative crawling, is an information retrieval task, hence it deals with knowledge distributed over multiple websites. Whereas the latter is designed to run in a virtual space, the second, denoted as machine park collaboration, can be implemented in industrial 4.0 fields of the real world.

Beschreibung

Reichhuber, Simon (2019): Knowledge Self-Adaptive Multi-Agent Learning. INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge). DOI: 10.18420/inf2019_ws54. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-689-3. pp. 507-515. Organic Computing Doctoral Dissertation Colloquium. Kassel. 23.-26. September 2019

Zitierform

Tags