Passive source localization using importance sampling based on TOA and FOA measurements | Frontiers of Information Technology & Electronic Engineering Skip to main content
Log in

Passive source localization using importance sampling based on TOA and FOA measurements

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Passive source localization via a maximum likelihood (ML) estimator can achieve a high accuracy but involves high calculation burdens, especially when based on time-of-arrival and frequency-of-arrival measurements for its internal nonlinearity and nonconvex nature. In this paper, we use the Pincus theorem and Monte Carlo importance sampling (MCIS) to achieve an approximate global solution to the ML problem in a computationally efficient manner. The main contribution is that we construct a probability density function (PDF) of Gaussian distribution, which is called an important function for efficient sampling, to approximate the ML estimation related to complicated distributions. The improved performance of the proposed method is attributed to the optimal selection of the important function and also the guaranteed convergence to a global maximum. This process greatly reduces the amount of calculation, but an initial solution estimation is required resulting from Taylor series expansion. However, the MCIS method is robust to this prior knowledge for point sampling and correction of importance weights. Simulation results show that the proposed method can achieve the Cramér-Rao lower bound at a moderate Gaussian noise level and outperforms the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizadeh, F., Goldfarb, D., 2003. Second-order cone programming. Math. Prog., 95(1): 3–51. https://doi.org/10.1007/s10107-002-0339-5

    Article  MathSciNet  Google Scholar 

  • Beck, A., Stoica, P., Li, J., 2008. Exact and approximate solutions of source localization problems. IEEE Trans. Signal Process., 56(5): 1770–1778. https://doi.org/10.1109/TSP.2012.2191778

    Article  MathSciNet  Google Scholar 

  • Broyden, C.G., 1970. The convergence of a class of doublerank minimization algorithms 1: general considerations. IMA J. Appl. Math., 6(1): 76–90. https://doi.org/10.1093/imamat/6.1.76

    Article  Google Scholar 

  • Chan, Y.T., Hang, H.Y.C., Ching, P.C., 2006. Exact and approximate maximum likelihood localization algorithms. 55(1): 10–16. https://doi.org/10.1109/TVT.2005.861162

    Google Scholar 

  • Cheung, K.W., So, H.C., Ma, W.K., et al., 2004. Least squares algorithms for time-of-arrival-based mobile location. IEEE Trans. Signal Process., 52(4): 1121–1130. https://doi.org/10.1109/TSP.2004.823465

    Article  MathSciNet  Google Scholar 

  • Coleman, T.F., Li, Y., An, I., 2006. Trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim., 6(2): 418–445. https://doi.org/10.1137/0806023

    Article  MathSciNet  Google Scholar 

  • Dong, L., 2012. Cooperative localization and tracking of mobile ad hoc networks. IEEE Trans. Signal Process., 60(7): 3907–3913. https://doi.org/10.1109/TSP.2012.2191778

    Article  MathSciNet  Google Scholar 

  • Elvira, V., Martino, L., Luengo, D., et al., 2016. Heretical multiple importance sampling. IEEE Signal Process. Lett., 23(10): 1474–1478. https://doi.org/10.1109/LSP.2016.2600678

    Article  Google Scholar 

  • Engel, U., 2009. A geolocation method using TOA and FOA measurements. positioning, navigation and communication. IEEE Workshop on Positioning, p.77–82. https://doi.org/10.1109/WPNC.2009.4907807

    Google Scholar 

  • Fletcher, R., Reeves, C.M., 1964. Function minimization by conjugate gradients. Comput. J., 7(2): 149–154. https://doi.org/10.1090/S0025.5718.1970.0274029.X

    Article  MathSciNet  Google Scholar 

  • Foy, W.H., 1976. Position-location solutions by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst., AES-12(2):187–194. https://doi.org/10.1109/TAES.1976.308294

    Article  Google Scholar 

  • Fu, Z., Sun, X., Liu, Q., et al., 2015. Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun., 98(1): 190–200. https://doi.org/10.1109/TSP.2012.2191778

    Article  Google Scholar 

  • Gu, B., Sun, X., Sheng, V.S., 2017. Structural minimax probability machine. IEEE Trans. Neur. Netw. Learn. Syst., 28(7): 1646–1656. https://doi.org/10.1109/TNNLS.2016.2544779

    Article  MathSciNet  Google Scholar 

  • Huang, J.G., Xie, D., Li, X., et al., 2006. Maximum likelihood DOA estimator based on importance sampling. IEEE Region 10 Conf., p.1–4. https://doi.org/10.1109/TENCON.2006.344051

    Google Scholar 

  • Kay, S.M., 1993. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Prentice-Hall, London, p.111–136.

    Google Scholar 

  • Kay, S.M, 2006. Intuitive Probability and Random Processes Using MATLAB. Springer, Berlin. https://doi.org/10.1007/b104645

    Book  Google Scholar 

  • Knapp, C., Carter, G., 1976. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process., 24(4): 320–327. https://doi.org/10.1109/TASSP.1976.1162830

    Article  Google Scholar 

  • Ma, Z., Ho, K.C., 2011. TOA localization in the presence of random sensor position errors. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.2468–2471. https://doi.org/10.1109/ICASSP.2011.5946984

    Google Scholar 

  • Masmoudi, A., Bellili, F., Affes, S., et al., 2013. A maximum likelihood time delay estimator in a multipath environment using importance sampling. IEEE Trans. Signal Process., 61(1): 182–193. https://doi.org/10.1109/TSP.2012.2222402

    Article  MathSciNet  Google Scholar 

  • Pan, Z., Lei, J., Zhang, Y., et al., 2016. Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Trans. Broadcast., 62(3): 1–10. https://doi.org/10.1109/TBC.2016.2580920

    Article  Google Scholar 

  • Papakonstantinou, K., Slock, D., 2009. Hybrid TOA/AOD/Doppler-shift localization algorithm for NLOS environments. Int. Symp. on Personal, Indoor and Mobile Radio Communications, p.1948–1952. https://doi.org/10.1109/PIMRC.2009.5450008

    Google Scholar 

  • Patwari, N., Ash, J.N., Kyperountas, S., et al., 2005. Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process. Mag., 22(4): 54–69. https://doi.org/10.1109/MSP.2005.1458287

    Article  Google Scholar 

  • Pincus, M., 1968. A closed form solution of certain programming problems. Oper. Res., 16(3): 690–694. https://doi.org/10.1287/opre.16.3.690

    Article  MathSciNet  Google Scholar 

  • Ramlall, R., Chen, J., Swindlehurst, A.L., 2014. Non-line-ofsight mobile station positioning algorithm using TOA, AOA, and Doppler-shift. Ubiquitous Positioning Indoor Navigation and Location Based Service, p.180–184. https://doi.org/10.1109/UPINLBS.2014.7033726

    Google Scholar 

  • Rappaport, T.S., Reed, J.H., Woerner, B.D., 1996. Position location using wireless communications on highways of the future. IEEE Commun. Mag., 34(10): 33–41. https://doi.org/10.1109/35.544321

    Article  Google Scholar 

  • Shanno, D.F., 1970. Conditioning of quasi-Newton methods for function minimization. Math. Comput., 24(111): 647–656. https://doi.org/10.1090/S0025.5718.1970.0274029.X

    Article  MathSciNet  Google Scholar 

  • Shen, J., Molisch, A.F., Salmi, J., 2012. Accurate passive location estimation using TOA measurements. IEEE Trans. Wirel. Commun., 11(6): 2182–2192. https://doi.org/10.1109/TWC.2012.040412.110697

    Article  Google Scholar 

  • Shikur, B.Y., Weber, T., 2014. Localization in NLOS environments using TOA, AOD, and Doppler-shift. 11th Workshop on Positioning, Navigation and Communication, p.1–6. https://doi.org/10.1109/WPNC.2014.6843297

    Google Scholar 

  • Vandenberghe, L., Boyd, S., 1998. Semidefinite programming. SIAM Rev., 38(1): 49–95. https://doi.org/10.1137/1038003

    Article  MathSciNet  Google Scholar 

  • Wang, G., Chen, H., 2011. An importance sampling method for TDOA-based source localization. IEEE Trans. Wirel. Commun., 10(5): 1560–1568. https://doi.org/10.1109/TWC.2011.030311.101011

    Article  Google Scholar 

  • Wang, H., Kay, S., 2010. Maximum likelihood angle-Doppler estimator using importance sampling. IEEE Trans. Aerosp. Electron. Syst., 46(2): 610–622. https://doi.org/10.1109/TAES.2010.5461644

    Article  Google Scholar 

  • Wang, H., Kay, S., Saha, S., 2008. An importance sampling maximum likelihood direction of arrival estimator. IEEE Trans. Signal Process., 56(10): 5082–5092. https://doi.org/10.1109/TSP.2008.928504

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Wu, Y., 2015. An improved direct position determination algorithm with combined time delay and Doppler. J. Xi’an Jiaotong Univ., 49(4): 123–129. https://doi.org/10.7652/xjtuxb201504020

    Google Scholar 

  • Wang, Y., Wu, Y., 2016. An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Commun. Lett., 21(1): 80–83. https://doi.org/10.1109/LCOMM.2016.2614936

    Article  Google Scholar 

  • Weiss, A.J., 2003. On the accuracy of a cellular location system based on RSS measurements. IEEE Trans. Veh. Technol., 52(6): 1508–1518. https://doi.org/10.1109/TVT.2003.819613

    Article  Google Scholar 

  • Xia, Z., Wang, X., Zhang, L., et al., 2016. A privacypreserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inform. Forens. Secur., 11(11): 2594–2608. https://doi.org/10.1109/TSP.2012.2191778

    Article  Google Scholar 

  • Yin, J.X., Wu, Y., Wang, D., 2014. On 2-D direction-of-arrival estimation performance for rank reduction estimator in presence of unexpected modeling errors. Circ. Syst. Signal Process., 33(2): 515–547. https://doi.org/10.1007/s00034-013-9654-8

    Article  Google Scholar 

  • Yin, J.X., Wu, Y., Wang, D., 2016. An auto-calibration method for spatially and temporally correlated noncircular sources in unknown noise fields. Multidimens. Syst. Signal Process., 27(2): 1–29. https://doi.org/10.1007/s11045-015-0316-9

    Article  MathSciNet  Google Scholar 

  • Zhang, W., Zhang, G., 2011. An efficient algorithm for TDOA/FDOA estimation based on approximate coherent accumulative of short-time CAF. Int. Conf. on Wireless Communications and Signal Processing, p.1–4. https://doi.org/10.1109/WCSP.2011.6096807

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-long Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61201381) and the China Postdoctoral Science Foundation (No. 2016M592989)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Rr., Wang, Yl., Yin, Jx. et al. Passive source localization using importance sampling based on TOA and FOA measurements. Frontiers Inf Technol Electronic Eng 18, 1167–1179 (2017). https://doi.org/10.1631/FITEE.1601657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601657

Key words

CLC number

Navigation