2010 Volume E93.A Issue 12 Pages 2399-2408
Clock driver suffers from delay variation due to manufacturing and environmental variabilities as well as combinational cells. The delay variation causes clock skew and jitter, and varies both setup and hold timing margins. This paper presents a timing verification method that takes into consideration delay variation inside a clock network due to both manufacturing variability and dynamic power supply noise. We also discuss that setup and hold slack computation inherently involves a structural correlation problem due to common paths, and demonstrate that assigning individual random variables to upstream clock drivers provides a notable accuracy improvement in clock skew estimation with limited increase in computational cost. We applied the proposed method to industrial designs in 90nm process. Experimental results show that dynamic delay variation reduces setup slack by over 500ps and hold slack by 16.4ps in test cases.