Abstract
Substrate noise coupling in RF receiver front-end circuitry for LTE wireless communication was examined by full-chip level simulation and on-chip measurements, with a demonstrator built in a 65nm CMOS technology. A CMOS digital noise emulator injects high-order harmonic noises in a silicon substrate and induces in-band spurious tones in an RF receiver on the same chip through substrate noise interference. A complete simulation flow of full-chip level substrate noise coupling uses a decoupled modeling approach, where substrate noise waveforms drawn with a unified package-chip model of noise source circuits are given to mixed-level simulation of RF chains as noise sensitive circuits. The distribution of substrate noise in a chip and the attenuation with distance are simulated and compared with the measurements. The interference of substrate noise at the 17th harmonics of 124.8MHz — the operating frequency of the CMOS noise emulator creates spurious tones in the communication bandwidth at 2.1GHz.