Abstract
The Keller–Segel–Navier–Stokes system governs chemotaxis in liquid environments. This system is to be solved for the organism and chemoattractant densities and for the fluid velocity and pressure. It is known that if the total initial organism density mass is below 2π there exist globally defined generalised solutions, but what is less understood is whether there are blow-up solutions beyond such a threshold and its optimality.
Motivated by this issue, a numerical blow-up scenario is investigated. Approximate solutions computed via a stabilised finite element method founded on a shock capturing technique are such that they satisfy a priori bounds as well as lower and L1(Ω) bounds for the organism and chemoattractant densities. In particular, these latter properties are essential in detecting numerical blow-up configurations, since the non-satisfaction of these two requirements might trigger numerical oscillations leading to non-realistic finite-time collapses into persistent Dirac-type measures.
Our findings show that the existence threshold value 2π encountered for the organism density mass may not be optimal and hence it is conjectured that the critical threshold value 4π may be inherited from the fluid-free Keller–Segel equations. Additionally it is observed that the formation of singular points can be neglected if the fluid flow is intensified.
Funding statement: JVGS was partially supported by the Spanish Grant No. PGC2018-098308-B-I00 from Ministerio de Ciencias e Innovación — Agencia Estatal de Investigación with the participation of FEDER and by the Andalusian Grant No. P20_01120 from Junta de Andalucía (Consejería de Economía, Conocimiento, Empresas y Universidad).
Acknowledgment
JVGS would like to thank Dr. Juan Carlos Dana and Dr. Víctor Álvarez from University of Seville for their valuable discussions on existence and uniqueness of approximate solutions.
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness LA-UR-23-20373.
References
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure and Applied Mathematics, Vol. 140, Elsevier/Academic Press, Amsterdam, 2003.Search in Google Scholar
[2] S. Badia and J. Bonilla, Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization, Comput. Methods Appl. Mech. Engrg. 313 (2017), 133–158.10.1016/j.cma.2016.09.035Search in Google Scholar
[3] S. Badia, J. Bonilla, and J. v. Gutiérrez-Santacreu, Bound-preserving finite element approximations of the Keller–Segel equations, Math. Models Methods Appl. Sci. 33 (2023), No. 3, 609–642.10.1142/S0218202523500148Search in Google Scholar
[4] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts in Applied Mathematics, Vol. 15. Springer, New York, 2008.10.1007/978-0-387-75934-0Search in Google Scholar
[5] A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math. 111 (2008), No. 2, 169–20510.1007/s00211-008-0188-0Search in Google Scholar
[6] A. Chertock, Y. Epshteyn, H. Hu, and A. Kurganov, High-order positivity-preserving hybrid finite-volume–finite-difference methods for chemotaxis systems, Adv. Comput. Math. 44 (2018), No. 1, 327–350.10.1007/s10444-017-9545-9Search in Google Scholar
[7] V. Girault and J.-L. Lions, Two-grid finite-element schemes for the transient Navier–Stokes problem, M2AN Math. Model. Numer. Anal. 35 (2001), No. 5, 945–980.10.1051/m2an:2001145Search in Google Scholar
[8] F. Guillén-González and J. V. Gutiérrez-Santacreu, From a cell model with active motion to a Hele–Shaw-like system: a numerical approach, Numer. Math. 143 (2019), No. 1, 107–137.10.1007/s00211-019-01053-7Search in Google Scholar
[9] J. V. Gutiérrez-Santacreu and J. R. Rodríguez-Galván, Analysis of a fully discrete approximation for the classical Keller–Segel model: Lower and a priori bounds, Comput. Math. Appl. 85 (2021), 69–81.10.1016/j.camwa.2021.01.009Search in Google Scholar
[10] D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math. 12 (2001), 159–177.10.1017/S0956792501004363Search in Google Scholar
[11] E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399–415.10.1016/0022-5193(70)90092-5Search in Google Scholar PubMed
[12] E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol. 30 (1971), 225–234.10.1016/0022-5193(71)90050-6Search in Google Scholar PubMed
[13] A. Kiselev and L. Ryzhik, Biomixing by chemotaxis and enhancement of biological reactions, Comm. Partial Diff. Equ. 37 (2012) 298–318.10.1080/03605302.2011.589879Search in Google Scholar
[14] A. Kiselev and L. Ryzhik, Biomixing by chemotaxis and efficiency of biological reactions: The critical reaction case, J. Math. Phys. 53 (2012), 115609.10.1063/1.4742858Search in Google Scholar
[15] X. H. Li, C.-W. Shu, Y. Yang, Local Discontinuous Galerkin Method for the Keller–Segel Chemotaxis Model, J. Sci. Comput. 73 (2017), No. 2-3, 943–967.10.1007/s10915-016-0354-ySearch in Google Scholar
[16] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077–1092.10.1512/iumj.1971.20.20101Search in Google Scholar
[17] T. Nagai, T. Senba, and K. Yoshida, Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkcial Ekvac. 40 (1997), 411–433.Search in Google Scholar
[18] R. H. Nochetto, Finite element methods for parabolic free boundary problems, Advances in Numerical Analysis, 1 (1991), 34–95,10.1093/oso/9780198534389.003.0002Search in Google Scholar
[19] B. Rivière, M. F. Wheeler, and V. Girault, A priori error estimates for finite element methods based on discontinuous approximations spaces for elliptic problems, SIAM J. Numer. Anal. 39 (2001), No. 3, 902–93110.1137/S003614290037174XSearch in Google Scholar
[20] N. Saito, Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis, Commun. Pure Appl. Anal. 11 (2012), No. 1, 339–364.10.3934/cpaa.2012.11.339Search in Google Scholar
[21] R. Strehl, A. Sokolov, D. Kuzmin, and S. Turek, A flux-corrected finite element method for chemotaxis problems, Comput. Methods Appl. Math. 10 (2010), No. 2, 219–232.10.2478/cmam-2010-0013Search in Google Scholar
[22] R. Strehl, A. Sokolov, D. Kuzmin, D. Horstmann, and S. Turek, A positivity-preserving finite element method for chemotaxis problems in 3D, J. Comp. Appl. Math. 239 (2013), No. 1, 290–303.10.1016/j.cam.2012.09.041Search in Google Scholar
[23] M. Sulman and T. Nguyen, A positivity preserving moving mesh finite element method for the Keller–Segel chemotaxis model, J. Sci. Comput. 80 (2019), No. 1, 649–666.10.1007/s10915-019-00951-0Search in Google Scholar
[24] L. R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp. 54 (1990) 483–493.10.1090/S0025-5718-1990-1011446-7Search in Google Scholar
[25] T. Senba and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time. Methods Appl. Anal. 8 (2001) 349–367.10.4310/MAA.2001.v8.n2.a9Search in Google Scholar
[26] T. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, Reprint of the 1984 ed., AMS Chelsea Publishing, Providence, RI, 2001.10.1090/chel/343Search in Google Scholar
[27] I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA 102 (2005) 2277–2282.10.1073/pnas.0406724102Search in Google Scholar PubMed PubMed Central
[28] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.10.1512/iumj.1968.17.17028Search in Google Scholar
[29] M. Winkler, Small-mass solutions in the two-dimensional Keller–Segel system coupled to the Navier–Stokes equations, SIAM J. Math. Anal. 52 (2020), No. 2, 2041–2080.10.1137/19M1264199Search in Google Scholar
A Existence and uniqueness of numerical solutions
For the sake of completeness we sketch the proof of the existence and uniqueness of numerical solutions defined by the nonlinear system (2.5)–(2.8). In order to simplify the argument it is assumed that
From now on we will make use of the notation introduced throughout this paper and the inverse inequalities (2.1) without being previously mentioned.
A.1 Existence
Let us consider the continuous mapping P : Nh × Ch → Nh × Ch defined as follows. Given
where
and
Take n̄h = nh and c̄h = ch to get
and
We want to prove that there exists L > 0 such that (P(nh, ch), (nh, ch)) > 0 holds for all (nh, ch) ∈ Nh × Ch satisfying
The mean value theorem implies that
and hence
Now let Tij ∈ 𝓣h be such that ai, aj ∈ Tij and denote hij = |ai – aj|. Then
where Eij ∈ 𝓔h such that ai, aj ∈ Eij. Cauchy–Schwarz’ inequality and an inverse inequality [19, Lem. 2.1] give
Thus
Furthermore
Therefore
Additionally, on noting that
Compiling the above bounds, we find
where we used the bounds ∥nh∥L2(Ω) ⩽ ∥nh∥h ⩽ C ∥nh∥L2(Ω) from [8, Prop. 2.3].
For P2, we have
Finally,
Letting k be small enough such that
we find
Thus, selecting
A.2 Uniqueness
It is assumed that there exist two different pair solutions (nh, ch) and (ñh, ñh). For concreteness we will only focus on the two more troublesome terms:
We first compare the convective terms:
From the definition of
for ϑ, ϑ̃ ∈ (0, 1). The term T1 is bounded as
where in the second inequality we used Young’s inequality aϑ̃ b1–ϑ̃ ⩽ ϑ̃ a + (1 – ϑ̃) b. Thus
and hence
Next we handle the chemotaxis terms. In doing so, we use the property
Then
For the stabilising terms we need to face the difference of the coefficients
We now proceed in this way. Define
Following the proof of [2, Thm. 6.1] and noting that
Then we have
Furthermore,
Summing the above two inequalities and choosing k to be small enough yields uniqueness.
© 2024 Walter de Gruyter GmbH, Berlin/Boston