Abstract
This paper presents a posteriori error estimate for the weak Galerkin (WG) finite element method used to solve H(curl)-elliptic problems. Firstly, we introduce a WG method for solving H(curl)-elliptic problems and a corresponding residual type error estimator without a stabilization term. Secondly, we establish the reliability of the error estimator by demonstrating that the stabilization term is controlled by the error estimator. We also evaluate the efficiency of the error estimator using standard bubble functions. Finally, we present some numerical results to show the performances of the error estimator in both uniform and adaptive meshes.
Funding statement: The authors are supported by the National Natural Science Foundation of China (No. 12071160). The first author is also supported by the National Natural Science Foundation of China (No. 12101250) and the Science and Technology Projects in Guangzhou (No. 202201010644). The second author is supported by the National Natural Science Foundation of China (No. 12101147).
References
[1] A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal., 48 (2010), 734–771.10.1137/08072838XSearch in Google Scholar
[2] A. Bossavit, Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements. Vol. 2 of Electromagnetism Series. Academic Press, San Diego, CA, 1998.Search in Google Scholar
[3] S. M. Chai, Y. Wang, W. J. Zhao, and Y. K. Zou, A c0 weak Galerkin method for linear Cahn–Hilliard–Cook equation with random initial condition. Appl. Math. Comput., 414 (2022), 126659.10.1016/j.amc.2021.126659Search in Google Scholar
[4] L. Chen, J. P. Wang, and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput., 59 (2014), 496–511.10.1007/s10915-013-9771-3Search in Google Scholar
[5] Y. M. Chen, G. Chen, and X. P. Xie, Weak Galerkin finite element method for Biot’s consolidation problem. J. Comput. Appl. Math., 330 (2018), 398–416.10.1016/j.cam.2017.09.019Search in Google Scholar
[6] M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element method for a singularly-perturbed biharmonic equation. J. Sci. Comput., 82 (2020), 5.10.1007/s10915-019-01120-zSearch in Google Scholar
[7] B. Deka and N. Kumar, Error estimates in weak Galerkin finite element methods for parabolic equations under low regularity assumptions. Appl. Numer. Math., 162 (2021), 81–105.10.1016/j.apnum.2020.12.003Search in Google Scholar
[8] B. Deka and P. Roy, Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions. Numer. Meth. Part. D. E., 36 (2020), 734–755.10.1002/num.22446Search in Google Scholar
[9] R. Hiptmair, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal., 36 (1999), 204–225.10.1137/S0036142997326203Search in Google Scholar
[10] P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math., 100 (2005), 485–518.10.1007/s00211-005-0604-7Search in Google Scholar
[11] P. Houston, I. Perugia, and D. Schötzau, An a posteriori error indicator for discontinuous Galerkin discretizations of h(curl)-elliptic partial differential equations. IMA J. Numer. Anal., 27 (2007), 122–150.10.1093/imanum/drl012Search in Google Scholar
[12] Q. Hu, Y. He, and K. Wang, Weak Galerkin method for the Helmholtz equation with DTN boundary condition. Int. J of Numer. Anal. Model., 17 (2020), 643–661.Search in Google Scholar
[13] G. R. Li, Y. P. Chen, and Y. Q. Huang, A new weak Galerkin finite element scheme for general second-order elliptic problems. J. Comp. Appl. Math., 344 (2018), 701–715.10.1016/j.cam.2018.05.021Search in Google Scholar
[14] H. G. Li, L. Mu, and X. Ye, A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes. Comm. Comput. Phys., 26 (2019), 558–578.10.4208/cicp.OA-2018-0058Search in Google Scholar
[15] J. G. Liu, S. Tavener, and Z. R. Wang, Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes. SIAM J. Sci. Comput., 40 (2018), B1229–B1252.10.1137/17M1145677Search in Google Scholar
[16] Y. Liu and Y. F. Nie, A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems. Comput. Math. Appl., 99 (2021), 73–83.10.1016/j.camwa.2021.08.002Search in Google Scholar
[17] L. Mu, Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes. J. Comput. Appl. Math., 361 (2019), 413–425.10.1016/j.cam.2019.04.026Search in Google Scholar
[18] L. Mu, J. P. Wang, X. Ye, and S. Y. Zhang, A weak Galerkin finite element method for the Maxwell equation. J. Sci. Comput., 65 (2015), 363–386.10.1007/s10915-014-9964-4Search in Google Scholar
[19] W. Y. Qi and L. J. Song, Weak Galerkin method with implicit ϑ-schemes for second-order parabolic problems. Appl. Math. Comput., 366 (2020), 124731.10.1016/j.amc.2019.124731Search in Google Scholar
[20] J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comp., 77 (2008), 633–649.10.1090/S0025-5718-07-02030-3Search in Google Scholar
[21] S. Shields, J. C. Li, and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell’s equations. Comput. Math. Appl., 74 (2017), 2106–2124.10.1016/j.camwa.2017.07.047Search in Google Scholar
[22] M. Sun and H. X. Rui, A coupling of weak Galerkin and mixed finite element methods for poroelasticity. Comput. Math. Appl., 73 (2017), 804–823.10.1016/j.camwa.2017.01.007Search in Google Scholar
[23] C. M. Wang, New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element. J. Comput. Appl. Math., 341 (2018), 127–143.10.1016/j.cam.2018.04.015Search in Google Scholar
[24] J. P. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems. J. Comp. Appl. Math., 241 (2013), 103–115.10.1016/j.cam.2012.10.003Search in Google Scholar
[25] X. S. Wang, X. Ye, S. Y. Zhang, and P. Zhu, A weak Galerkin least squares finite element method of Cauchy problem for Poisson equation. J. Comput. Appl. Math., 401 (2022), 113767.10.1016/j.cam.2021.113767Search in Google Scholar
[26] Y. Y. Xie, M. Tang, and C. M. Tang, A weak Galerkin finite element method for indefinite time-harmonic Maxwell equations. Appl. Math. Comput., 435 (2021), 127471.10.1016/j.amc.2022.127471Search in Google Scholar
[27] S. Xu, A posteriori error estimates for weak Galerkin methods for second order elliptic problems on polygonal meshes. Appl. Numer. Math., 161 (2021), 510–524.10.1016/j.apnum.2020.12.005Search in Google Scholar
[28] Q. L. Zhai, X. He Hu, R. Zhang, and Z. M. Zhang, Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem. J. Sci. Comput., 79 (2019), 914–934.10.1007/s10915-018-0877-5Search in Google Scholar
[29] J. C. Zhang, J. S. Li, J. Z. Li, and K. Zhang, An adaptive weak Galerkin finite element method with hierarchical bases for the elliptic problem. Numer. Methods Partial Differential Equations, 36 (2020), 1280–1303.10.1002/num.22473Search in Google Scholar
[30] T. Zhang and Y. L. Chen, A posteriori error analysis for the weak Galerkin method for solving elliptic problems. Int. J. Comput. Methods, 15 (2018), 1850075.10.1142/S0219876218500755Search in Google Scholar
[31] P. Zhu and S. L. Xie, Superconvergent weak Galerkin methods for non-self adjoint and indefinite elliptic problems. Appl. Numer. Math., 172 (2022), 300–314.10.1016/j.apnum.2021.10.014Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston