Abstract
This paper provides an overview of the new features of the finite element library deal.II, version 9.3.
4 Acknowledgments
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
deal.II is a world-wide project with dozens of contributors around the globe. Other than the authors of this paper, the following people contributed code to this release:
Pasquale Africa, Tyler Anderson, Mathias Anselmann, Arpit Babbar, Maximilian Bergbauer, Nicolas Barnafi, Michele Bucelli, Marcus Calhoun-Lopez, David F. Castellanos, Fabian Castelli, Praveen Chandrashekar, Conrad Clevenger, Andrew Davis, Elias Dejene, Niklas Fehn, Menno Fraters, Ivan Fumagalli, Daniel Garcia-Sanchez, Nicola Giuliani, Krishnakumar Gopalakrishnan, Alexander Grayver, Olivier Guevremont, Jake Harmon, Graham Harper, Katharina Kormann, Christoph Kammer, Wenyu Lei, Zhou Lei, Phillip Mobley, Nils Much, Pratik Nayak, Toni El Geitani Nehme, Justin O’Connor, Daniel Paukner, Lei Qiao, Ce Qin, Reza Rastak, Julian Roth, Laura Prieto Saavedra, Doug Shi-Dong, David Schneider, Magdalena Schreter, Richard Schussnig, Dominic Soldner, Simon Sticko, Malhar Tidke, Ignacio Tomas, Benjamin Uekermann, Peter Westerbaan.
Their contributions are much appreciated!
-
Funding: deal.II and its developers are financially supported through a variety of funding sources:
D. Arndt and B. Turcksin: Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy;
W. Bangerth, T. Heister, R. Gassmöller, and J. Zhang were partially supported by the Computational Infrastructure for Geodynamics initiative (CIG), through the National Science Foundation (NSF) under Award No. EAR-1550901 and The University of California – Davis;
W. Bangerth and M. Fehling were partially supported by Award OAC-1835673 as part of the Cyberinfrastructure for Sustained Scientific Innovation (CSSI) program;
W. Bangerth was also partially supported by Awards DMS-1821210 and EAR-1925595;
B. Blais was partially supported by the National Science and Engineering Research Council of Canada (NSERC) through the RGPIN-2020-04510 Discovery Grant;
T. Heister and J. Zhang were also partially supported by NSF Award OAC-2015848;
T. Heister was also partially supported by the NSF Awards DMS-2028346, EAR-1925575, and by Technical Data Analysis, Inc. through US Navy STTR Contract N68335-18-C-0011;
R. Gassmöller was also partially supported by the NSF Award EAR-1925595;
L. Heltai was partially supported by the Italian Ministry of Instruction, University and Research (MIUR), under the 2017 PRIN project NA-FROM-PDEs MIUR PE1, ‘Numerical Analysis for Full and Reduced Order Methods for the efficient and accurate solution of complex systems governed by Partial Differential Equations’;
M. Kronbichler and P. Munch were partially supported by the Bayerisches Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch-und Höchstleistungsrechnen (KONWIHR) in the context of the projects ‘Performance tuning of high-order discontinuous Galerkin solvers for SuperMUC-NG’ and ‘High-order matrix-free finite element implementations with hybrid parallelization and improved data locality’;
M. Maier was partially supported by NSF Awards DMS-1912847 and DMS-2045636;
D. Wells was supported by NSF through Grant DMS-1344962.
The Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University has provided hosting services for the deal.II web page.
References
[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Analysis Appl. 23 (2001), No. 1, 15–41.10.1137/S0895479899358194Search in Google Scholar
[2] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing 32 (2006), No. 2, 136–156.10.1016/j.parco.2005.07.004Search in Google Scholar
[3] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg. 184 (2000), 501–520.10.1016/S0045-7825(99)00242-XSearch in Google Scholar
[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.10.1137/1.9780898719604Search in Google Scholar
[5] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, R. Rastak, I. Thomas, B. Turcksin, Z. Wang, and D. Wells, The deal.II library, Version 9.2, J. Numer. Math. 28 (2020), No. 3, 131–146.10.1515/jnma-2020-0043Search in Google Scholar
[6] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II library, Version 9.1, J. Numer. Math. 27 (2019), No. 4, 203–213.10.1515/jnma-2019-0064Search in Google Scholar
[7] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II finite element library: Design, features, and insights, Comput. & Math. Appl. 81 (2021), 407–422.10.1016/j.camwa.2020.02.022Search in Google Scholar
[8] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. Curfman McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Argonne National Laboratory, Report No. ANL-95/11 – Revision 3.15, 2021.10.2172/1814627Search in Google Scholar
[9] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. C. McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web page, 2021, https://www.mcs.anl.gov/petsc.Search in Google Scholar
[10] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Software 38 (2011), No. 2, 14/1–14/28.10.1145/2049673.2049678Search in Google Scholar
[11] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – a general purpose object oriented finite element library, ACM Trans. Math. Software 33 (2007), No. 4, 24/1–24/27.10.1145/1268776.1268779Search in Google Scholar
[12] W. Bangerth and O. Kayser-Herold, Data structures and requirements for hp finite element software, ACM Trans. Math. Software 36 (2009), No. 1, 4/1–4/31.10.1145/1486525.1486529Search in Google Scholar
[13] R. A. Bartlett, D. M. Gay, and E. T. Phipps, Automatic Differentiation of C++ Codes for Large-Scale Scientific Computing, International Conference on Computational Science – ICCS 2006 (Eds. V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra), Springer, Berlin–Heidelberg, 2006, pp. 525–532.10.1007/11758549_73Search in Google Scholar
[14] R. Becker and M. Braack, Multigrid techniques for finite elements on locally refined meshes, Numer. Linear Alg. Appl. 7 (2000), No. 6, 363–379.10.1002/1099-1506(200009)7:6<363::AID-NLA202>3.0.CO;2-VSearch in Google Scholar
[15] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.10.1137/1.9780898719642Search in Google Scholar
[16] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, and B. Uekermann, preCICE – a fully parallel library for multi-physics surface coupling, Computers & Fluids 141 (2016), 250–258.10.1016/j.compfluid.2016.04.003Search in Google Scholar
[17] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33 (2011), No. 3, 1103–1133.10.1137/100791634Search in Google Scholar
[18] T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler, A flexible, parallel, adaptive geometric multigrid method for FEM, ACM Trans. Math. Software 47 (2021), No. 1, 7/1–7/27.10.1145/3425193Search in Google Scholar
[19] cuSOLVER Library, https://docs.nvidia.com/cuda/cusolver/index.html.Search in Google Scholar
[20] cuSPARSE Library, https://docs.nvidia.com/cuda/cusparse/index.html.Search in Google Scholar
[21] T. A. Davis, Algorithm 832: UMFPACK v4.3 – an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software 30 (2004), 196–199.10.1145/992200.992206Search in Google Scholar
[22] D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann, Convergence study of the h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum mechanics, Adv. Modeling Simul. Engrg. Sci. 4 (2017), No. 1, 7.10.1186/s40323-017-0093-0Search in Google Scholar
[23] A. DeSimone, L. Heltai, and C. Manigrasso, Tools for the solution of PDEs defined on curved manifolds with deal.II, SISSA, Report No. 42/2009/M, 2009.Search in Google Scholar
[24] N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler, Hybrid multigrid methods for high-order discontinuous Galerkin discretizations, J. Comput. Phys. 415 (2020), 109538.10.1016/j.jcp.2020.109538Search in Google Scholar
[25] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and R. Ulerich, GNU Scientific Library Reference Manual (Edition 2.3), 2016.Search in Google Scholar
[26] R. Gassmöller, H. Lokavarapu, E. Heien, E. G. Puckett, and W. Bangerth, Flexible and scalable particle-in-cell methods with adaptive mesh refinement for geodynamic computations, Geochemistry, Geophysics, Geosystems 19 (2018), No. 9, 3596–3604.10.1029/2018GC007508Search in Google Scholar
[27] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Engrg. 79 (2009), No. 11, 1309–1331.10.1002/nme.2579Search in Google Scholar
[28] Ginkgo: High-Performance Linear Algebra Library for Manycore Systems, https://github.com/ginkgo-project/ginkgo.Search in Google Scholar
[29] N. Giuliani, A. Mola, and L. Heltai, $\pi$-BEM: A flexible parallel implementation for adaptive, geometry aware, and high order boundary element methods, Adv. Engrg. Software 121 (2018), 39–58.10.1016/j.advengsoft.2018.03.008Search in Google Scholar
[30] S. Golshan, P. Munch, R. Gassmöller, M. Kronbichler, and B. Blais, Lethe-DEM: An open-source parallel discrete element solver with load balancing, Preprint arXiv:2106.09576, 2021.10.1007/s40571-022-00478-6Search in Google Scholar
[31] A. Griewank, D. Juedes, and J. Utke, Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++, ACM Trans. Math. Software 22 (1996), No. 2, 131–167.10.1145/229473.229474Search in Google Scholar
[32] L. Heltai, W. Bangerth, M. Kronbichler, and A. Mola, Propagating geometry information to finite element computations, ACM Trans. Math. Software, 47 (2021), No. 4, 32:1–32:30.10.1145/3468428Search in Google Scholar
[33] L. Heltai and A. Mola, Towards the Integration of CAD and FEM using open source libraries: A collection of deal.II manifold wrappers for the OpenCASCADE library, SISSA, Report, 2015.Search in Google Scholar
[34] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software 31 (2005), No. 3, 351–362.10.1145/1089014.1089019Search in Google Scholar
[35] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the Trilinos project, ACM Trans. Math. Software 31 (2005), 397–423.10.1145/1089014.1089021Search in Google Scholar
[36] M. A. Heroux et al., Trilinos Web page, 2021, https://trilinos.org.Search in Google Scholar
[37] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, SUNDIALS: suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Software 31 (2005), No. 3, 363–396.10.1145/1089014.1089020Search in Google Scholar
[38] International Standards OrganizationSearch in Google Scholar
[39] B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for H1- and Hcurl-conforming high order finite element methods, SIAM J. Sci. Comput. 33 (2011), No. 4, 2095–2114.10.1137/090778523Search in Google Scholar
[40] G. Kanschat, Multi-level methods for discontinuous Galerkin FEM on locally refined meshes, Comput. & Struct. 82 (2004), No. 28, 2437–2445.10.1016/j.compstruc.2004.04.015Search in Google Scholar
[41] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998), No. 1, 359–392.10.1137/S1064827595287997Search in Google Scholar
[42] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluids 63 (2012), 135–147.10.1016/j.compfluid.2012.04.012Search in Google Scholar
[43] M. Kronbichler and K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators, ACM Trans. Math. Software 45 (2019), No. 3, 29:1–29:40.10.1145/3325864Search in Google Scholar
[44] D. Lebrun-Grandié, A. Prokopenko, B. Turcksin, and S. R. Slattery, ArborX: a performance portable geometric search library, ACM Trans. Math. Software 47 (2021), No. 1, 2/1–2/15.10.1145/3412558Search in Google Scholar
[45] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.10.1137/1.9780898719628Search in Google Scholar
[46] F. Lindner, A. Totounferoush, M. Mehl, B. Uekermann, N. E. Pour, V. Krupp, S. Roller, T. Reimann, D. C. Sternel, R. Egawa, et al., ExaFSA: parallel fluid-structure-acoustic simulation, Software for Exascale Computing-SPPEXA 2016-2019, 136 (2020), 271.10.1007/978-3-030-47956-5_10Search in Google Scholar
[47] List of Changes for 9.3, https://www.dealii.org/developer/doxygen/deal.II/changes_between_9_2_0_and_9_3_0.html.Search in Google Scholar
[48] A. Logg, Efficient representation of computational meshes, Int. J. Comp. Sci. Engrg. 4 (2009), No. 4, 283–295.10.1504/IJCSE.2009.029164Search in Google Scholar
[49] M. Maier, M. Bardelloni, and L. Heltai, LinearOperator – a generic, high-level expression syntax for linear algebra, Comput. Math. Appl. 72 (2016), No. 1, 1–24.10.1016/j.camwa.2016.04.024Search in Google Scholar
[50] M. Maier, M. Bardelloni, and L. Heltai, LinearOperator Benchmarks, Version 1.0.0, March 2016, Zenodo. https://doi.org/10.5281/zenodo.47202.Search in Google Scholar
[51] MUMPS: a MUltifrontal Massively Parallel sparse direct Solver, http://graal.ens-lyon.fr/MUMPS/.Search in Google Scholar
[52] P. Munch, K. Kormann, and M. Kronbichler, hyper.deal: An efficient, matrix-free finite-element library for high-dimensional partial differential equations, ACM Trans. Math. Software, 47 (2021), No. 4, 33:1-33:34.10.1145/3469720Search in Google Scholar
[53] muparser: Fast Math Parser Library, http://muparser.beltoforion.de/.Search in Google Scholar
[54] OpenCASCADE: Open CASCADE Technology, 3D Modeling & Numerical Simulation, http://www.opencascade.org/.Search in Google Scholar
[55] J. Reinders, Intel Threading Building Blocks, O’Reilly, 2007.Search in Google Scholar
[56] D. Ridzal and D. P. Kouri, Rapid Optimization Library., Sandia National Laboratories (SNL-NM), Albuquerque, NM, Report, 2014.Search in Google Scholar
[57] A. Sartori, N. Giuliani, M. Bardelloni, and L. Heltai, deal2lkit: A toolkit library for high performance programming in deal.II, SoftwareX 7 (2018), 318–327.10.1016/j.softx.2018.09.004Search in Google Scholar
[58] N. Schlömer, quadpy: Your one-stop shop for numerical integration in python, 2021, https://github.com/nschloe/quadpy/.Search in Google Scholar
[59] T. Schulze, A. Gessler, K. Kulling, D. Nadlinger, J. Klein, M. Sibly, and M. Gubisch, Open asset import library (assimp), 2012, https://github.com/assimp/assimp.Search in Google Scholar
[60] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler, Parallel geometric-algebraic multigrid on unstructured forests of octrees, In: SC’12: Proc. of the Int. Conf. on High Performance Computing, Networking, Storage and Analysis, IEEE, 2012, pp. 1–11.10.1109/SC.2012.91Search in Google Scholar
[61] SymEngine: Fast Symbolic Manipulation Library, Written in C++, https://symengine.org/.Search in Google Scholar
[62] The HDF Group, Hierarchical Data Format, Version 5, 1997-2018, http://www.hdfgroup.org/HDF5/.Search in Google Scholar
[63] B. Turcksin, M. Kronbichler, and W. Bangerth, WorkStream – a design pattern for multicore-enabled finite element computations, ACM Trans. Math. Software 43 (2016), No. 1, 2/1–2/29.10.1145/2851488Search in Google Scholar
[64] A. Walther and A. Griewank, Getting started with ADOL-C, In: Combinatorial Scientific Computing, (Eds. U. Naumann and O. Schenk), Chapman-Hall CRC Comput. Sci., 2012, pp. 181–202.10.1201/b11644-8Search in Google Scholar
[65] F. D. Witherden and P. E. Vincent, On the identification of symmetric quadrature rules for finite element methods, Computers & Math. Appl. 69 (2015), No. 10, 1232–1241.10.1016/j.camwa.2015.03.017Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston