Abstract
Despite its idealizations, thermodynamics has proven its power as a predictive theory for practical applications. In particular, the Curzon–Ahlborn efficiency provides a benchmark for any real engine operating at maximal power. Here we further develop the analysis of endoreversible Otto engines. For a generic class of working mediums, whose internal energy is proportional to some power of the temperature, we find that no engine can achieve the Carnot efficiency at finite power. However, we also find that for the specific example of photonic engines the efficiency at maximal power is higher than the Curzon–Ahlborn efficiency.
Funding source: Foundational Questions Institute
Award Identifier / Grant number: FQXi-RFP-1808
Funding statement: This research was supported by the Foundational Questions Institute (grant number FQXi-RFP-1808) and the Fetzer Franklin Fund, a donor-advised fund of the Silicon Valley Community Foundation.
Acknowledgment
This work was conducted as part of the Undergraduate Research Program (Z.S.) in the Department of Physics at UMBC.
References
[1] D. Kondepudi and I. Prigogine, Modern Thermodynamics, John Wiley & Sons, 1998.Search in Google Scholar
[2] H. Callen, Thermodynamics and an Introduction to Thermostastistics, Wiley, New York, USA, 1985.Search in Google Scholar
[3] K. H. Hoffmann, J. M. Burzler and S. Schubert, J. Non-Equilib. Thermodyn.22 (1997), 311.Search in Google Scholar
[4] F. L. Curzon and B. Ahlborn, Am. J. Phys.43 (1975), 22.10.1119/1.10023Search in Google Scholar
[5] L. B. Erbay and H. Yavuz, Energy22 (1997), 645.10.1016/S0360-5442(96)00159-4Search in Google Scholar
[6] M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck, Phys. Rev. Lett.105 (2010), 150603.10.1103/PhysRevLett.105.150603Search in Google Scholar PubMed
[7] H. S. Leff, Am. J. Phys.55 (1987), 602.10.1119/1.15071Search in Google Scholar
[8] Y. Rezek and R. Kosloff, New J. Phys.8 (2006), 83.10.1088/1367-2630/8/5/083Search in Google Scholar
[9] O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, et al., Phys. Rev. Lett.109 (2012), 203006.10.1103/PhysRevLett.109.203006Search in Google Scholar PubMed
[10] R. Uzdin and R. Kosloff, Europhys. Lett.108 (2014), 40001.10.1209/0295-5075/108/40001Search in Google Scholar
[11] S. Deffner, Entropy20 (2018), 875.10.3390/e20110875Search in Google Scholar PubMed PubMed Central
[12] S. Deffner and S. Campbell, Quantum Thermodynamics, Morgan & Claypool Publishers, 2019.10.1088/2053-2571/ab21c6Search in Google Scholar
[13] M. Kloc, P. Cejnar and G. Schaller, Phys. Rev. E100 (2019), 042126.10.1103/PhysRevE.100.042126Search in Google Scholar PubMed
[14] N. M. Myers and S. Deffner, Phys. Rev. E101 (2020), 012110.10.1103/PhysRevE.101.012110Search in Google Scholar PubMed
[15] J. -F. Chen, C. -P. Sun and H. Dong, Phys. Rev. E100 (2019), 032144.10.1103/PhysRevE.100.062141Search in Google Scholar PubMed
[16] J. -F. Chen, C. -P. Sun and H. Dong, Phys. Rev. E100 (2019), 062140.10.1103/PhysRevE.100.062141Search in Google Scholar
[17] M. V. S. Bonança, J. Stat. Mech. Theory Exp.2019, (2019), 123203.10.1088/1742-5468/ab4e92Search in Google Scholar
[18] O. Abah and M. Paternostro, Phys. Rev. E99 (2019), 022110.10.1103/PhysRevE.99.022110Search in Google Scholar PubMed
[19] S. Lee, M. Ha, J. -M. Park and H. Jeong, Phys. Rev. E101 (2020), 022127.10.1103/PhysRevE.101.022127Search in Google Scholar PubMed
[20] O. Raz, Y. Subasi and R. Pugatch, Phys. Rev. Lett.116 (2016), 160601.10.1103/PhysRevLett.116.160601Search in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston