Trajectory-based traffic observation of cooperation at a road narrowing Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 7, 2023

Trajectory-based traffic observation of cooperation at a road narrowing

Implications for autonomous driving

Trajektorienbasierte Verkehrsbeobachtung von Kooperation an einer Fahrbahnverengung
Auswirkungen auf das autonome Fahren
  • Laura Quante

    Laura Quante studied psychology at the University of Bielefeld (B.Sc.) and the University of Münster (M.Sc.). From 2015 to 2018, she worked at the Department of Psychology, University of Münster. In 2018, she has joined DLR’s Institute of Transportation Systems, focusing on human factors research.

    EMAIL logo
    , Kay Gimm

    Kay Gimm studied industrial engineering (M. Sc.) with a focus on traffic at the Technical University of Braunschweig. In 2014 he joined the Institute for Transportation Systems at DLR to investigate safety critical events based on naturalistic traffic data. Since 2017 he is leading a research group for “Modelling of traffic behavior”.

    and Caroline Schießl

    Dr. Caroline Schießl received her diploma degree in psychology in 2002, her PhD in 2009. Since 2003 she has worked at the DLR, Institute of Transportation Systems. 2021 she became head of department “information flow modelling in mobility systems”. Her research focuses on Human Factors and user-centered research methodologies for digitalised and automated future mobility.

Abstract

Understanding human interactions in today’s transportation system is a prerequisite for developing well-accepted cooperatively interacting autonomous vehicles. This paper is devoted to the two-sided narrow passage scenario and uses trajectory data to investigate drivers’ interaction behavior when encountering each other from opposite directions. Trajectory data of 209 encounters at a road narrowing were analyzed in terms of drivers’ approaching behavior and arrival order. The exploratory analysis has shown that in this specific location an informal traffic rule has developed: It was not the order of arrival but the direction of travel that primarily determined who passed the road narrowing first. This result shows that informal rules can influence drivers’ interaction behavior and should accordingly be considered in the development of autonomous vehicles to ensure safe and efficient encounters with human road users.

Zusammenfassung

Ein umfassendes Verständnis des menschlichen Interaktionsverhaltens im Straßenverkehr ist Voraussetzung für die Entwicklung kooperativer autonomer Fahrzeuge. In diesem Beitrag wurde anhand von Trajektoriendaten das Interaktionsverhalten von Fahrern an einer beidseitigen Fahrbahnverengung, insbesondere hinsichtlich der Ankunftsreihenfolge, untersucht. Die explorative Analyse hat gezeigt, dass sich an diesem speziellen Ort eine informelle Verkehrsregel entwickelt hat: Nicht die Ankunftsreihenfolge, sondern die Fahrtrichtung bestimmte primär, wer die Straßenverengung zuerst passierte. Dieses Ergebnis zeigt, dass informelle Regeln das Interaktionsverhalten von Fahrern beeinflussen können und dementsprechend bei der Entwicklung von autonomen Fahrzeugen berücksichtigt werden sollten, um sichere und effiziente Begegnungen mit menschlichen Verkehrsteilnehmern zu gewährleisten.


Corresponding author: Laura Quante, Institut für Verkehrssystemtechnik, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Lilienthalplatz 7, 38108 Braunschweig, Germany, E-mail:

About the authors

Laura Quante

Laura Quante studied psychology at the University of Bielefeld (B.Sc.) and the University of Münster (M.Sc.). From 2015 to 2018, she worked at the Department of Psychology, University of Münster. In 2018, she has joined DLR’s Institute of Transportation Systems, focusing on human factors research.

Kay Gimm

Kay Gimm studied industrial engineering (M. Sc.) with a focus on traffic at the Technical University of Braunschweig. In 2014 he joined the Institute for Transportation Systems at DLR to investigate safety critical events based on naturalistic traffic data. Since 2017 he is leading a research group for “Modelling of traffic behavior”.

Caroline Schießl

Dr. Caroline Schießl received her diploma degree in psychology in 2002, her PhD in 2009. Since 2003 she has worked at the DLR, Institute of Transportation Systems. 2021 she became head of department “information flow modelling in mobility systems”. Her research focuses on Human Factors and user-centered research methodologies for digitalised and automated future mobility.

Acknowledgement

The authors thank Marek Junghans for extracting the analyzed encounters.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This project was funded within the Priority Program (SPP 1835) “Cooperatively Interacting Automobiles”.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] On-Road Automated Driving (ORAD) Committee, Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (J3016), SAE International, United States, 2018.Search in Google Scholar

[2] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations,” Transp. Res. Part A: Policy Pract., vol. 77, pp. 167–181, 2015. https://doi.org/10.1016/j.tra.2015.04.003.Search in Google Scholar

[3] L. Müller, M. Risto, and C. Emmenegger, “The social behaviour of autonomous vehicles,” in Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, 2016, pp. 686–689.10.1145/2968219.2968561Search in Google Scholar

[4] E. R. Straub and K. E. Schaefer, “It takes two to Tango: automated vehicles and human beings do the dance of driving–Four social considerations for policy,” Transp. Res. Part A: Policy Pract., vol. 122, pp. 173–183, 2019. https://doi.org/10.1016/j.tra.2018.03.005.Search in Google Scholar

[5] J. C. Mertens, C. Knies, F. Diermeyer, S. Escherle, and S. Kraus, “The need for cooperative automated driving,” Electronics, vol. 9, no. 5, p. 754, 2020. https://doi.org/10.3390/electronics9050754.Search in Google Scholar

[6] M. P. Pacaux-Lemoine and F. Flemisch, “Layers of shared and cooperative control, assistance, and automation,” Cogn. Technol. Work, vol. 21, pp. 579–591, 2019. https://doi.org/10.1007/s10111-018-0537-4.Search in Google Scholar

[7] J. Carmona, C. Guindel, F. Garcia, and A. de la Escalera, “eHMI: review and guidelines for deployment on autonomous vehicles,” Sensors, vol. 21, no. 9, p. 2912, 2021. https://doi.org/10.3390/s21092912.Search in Google Scholar PubMed PubMed Central

[8] B. Färber, “Communication and communication problems between autonomous vehicles and human drivers,” in Autonomous Driving, Berlin, Heidelberg, Springer, 2016, pp. 125–144.10.1007/978-3-662-48847-8_7Search in Google Scholar

[9] E. Portouli, D. Nathanael, and N. Marmaras, “Drivers’ communicative interactions: on-road observations and modelling for integration in future automation systems,” Ergonomics, vol. 57, no. 12, pp. 1795–1805, 2014. https://doi.org/10.1080/00140139.2014.952349.Search in Google Scholar PubMed

[10] T. Stoll, M. Lanzer, and M. Baumann, “Situational influencing factors on understanding cooperative actions in automated driving,” Transp. Res. Part F: Traffic Psychol. Behav., vol. 70, pp. 223–234, 2020. https://doi.org/10.1016/j.trf.2020.03.006.Search in Google Scholar

[11] G. M. Björklund and L. Åberg, “Driver behaviour in intersections: formal and informal traffic rules,” Transp. Res. Part F: Traffic Psychol. Behav., vol. 8, no. 3, pp. 239–253, 2005. https://doi.org/10.1016/j.trf.2005.04.006.Search in Google Scholar

[12] Y. M. Lee, R. Madigan, O. Giles, et al.., “Road users rarely use explicit communication when interacting in today’s traffic: implications for automated vehicles,” Cogn. Technol. Work, vol. 23, no. 2, pp. 367–380, 2021. https://doi.org/10.1007/s10111-020-00635-y.Search in Google Scholar

[13] J. Uttley, Y. Lee, R. Madigan, and N. Merat, “Road user interactions in a shared space setting: priority and communication in a UK car park,” Transp. Res. F: Traffic Psychol. Behav., vol. 72, pp. 32–46, 2020. https://doi.org/10.1016/j.trf.2020.05.004.Search in Google Scholar

[14] D. Metz, “Developing policy for urban autonomous vehicles: impact on congestion,” Urban Sci., vol. 2, no. 2, p. 33, 2018. https://doi.org/10.3390/urbansci2020033.Search in Google Scholar

[15] J. Imbsweiler, M. Ruesch, R. Palyafári, B. Deml, and F. Puente León, “Entwicklung einer Beobachtungsmethode von Verhaltensströmen in kooperativen Situationen im innerstädtischen Verkehr,” in Fahrerassistenz und automatisiertes Fahren, Wolfsburg, Germany, Proceedings of the 32. VDI/VW-Gemeinschaftstagung, 2016.10.51202/9783181022887-439Search in Google Scholar

[16] M. Rettenmaier, C. Requena Witzig, and K. Bengler, “Interaction at the bottleneck–a traffic observation,” in International Conference on Human Systems Engineering and Design: Future Trends and Applications, Springer, 2019, pp. 243–249.10.1007/978-3-030-27928-8_37Search in Google Scholar

[17] K. Schuler, L. Quante, C. Schießl, M. Beggiato, and G. Jahn, “Communication between drivers in a road bottleneck scenario,” in Human Factors in Transportation. AHFE (2022) International Conference, vol. 60, K. Plant and G. Praetorius, Eds., AHFE Open Access, 2022.10.54941/ahfe1002461Search in Google Scholar

[18] J. Imbsweiler, R. Palyafari, F. Puente Leon, and B. Deml, “Untersuchung des Entscheidungsverhaltens in kooperativen Verkehrssituationen am Beispiel einer Engstelle,” at - Automatisierungstechnik, vol. 65, no. 7, pp. 477–488, 2017. https://doi.org/10.1515/auto-2016-0127.Search in Google Scholar

[19] H. Weinreuter, J. Imbsweiler, N. R. Strelau, B. Deml, and F. P. Leon, “Prediction of human driver intentions at a narrow passage in inner city traffic/Intentionsprädiktion menschlicher Fahrer an einer Engstelle im innerstädtischen Straßenverkehr,” TM – Tech. Mess., vol. 86, no. s1, pp. 127–131, 2019. https://doi.org/10.1515/teme-2019-0063.Search in Google Scholar

[20] L. Miller, J. Leitner, J. Kraus, et al.., “Time to arrival as predictor for uncertainty and cooperative driving decisions in highly automated driving,” in 2022 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2022, pp. 1048–1053.10.1109/IV51971.2022.9827416Search in Google Scholar

[21] S. Knake-Langhorst and K. Gimm, “AIM mobile taffic acquisition: instrument toolbox for detection and assessment of traffic behavior,” Journal of Large-scale Research Facilities, vol. 2, p. A74, 2016. https://doi.org/10.17815/jlsrf-2-123.Search in Google Scholar

[22] J. W. Tukey, Exploratory Data Analysis, Reading, MA, Addison-Wesley, 1977.Search in Google Scholar

[23] K. Oeltze and C. Schießl, “Benefits and challenges of multi-driver simulator studies,” IET Intell. Transp. Syst., vol. 9, no. 6, pp. 618–625, 2015. https://doi.org/10.1049/iet-its.2014.0210.Search in Google Scholar

Received: 2023-01-10
Accepted: 2023-02-27
Published Online: 2023-04-07
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.1.2025 from https://www.degruyter.com/document/doi/10.1515/auto-2023-0003/html
Scroll to top button