The Networked Energy Systems Emulation Center at the German Aerospace Center DLR – bridging the gap between digital simulation and real operation of energy grids Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 1, 2022

The Networked Energy Systems Emulation Center at the German Aerospace Center DLR – bridging the gap between digital simulation and real operation of energy grids

Das Emulationszentrum für Vernetzte Energiesysteme am Deutschen Zentrum für Luft-und Raumfahrt
  • Karsten von Maydell EMAIL logo , Jan Petznik , Holger Behrends , Thomas Esch , Moiz Ahmed , Alejandro Rubio , Leon Uhse , Rasmus Völker , Sebastian Unglaube , Stefan Geißendörfer , Frank Schuldt and Carsten Agert

Abstract

This paper describes the Networked Energy Systems Emulation Center – DLR-NESTEC – a platform for research on power grids of the future. The DLR-NESTEC consists of a large number of networked power electronic components with which real hardware can be emulated using a real-time simulation system. The grid networking is realized via cable emulators. The laboratory works with real physical power flows and has a connected load of 800 kVA. In addition to the emulators, real network components can be integrated into the laboratory. The sector coupling is addressed by the coupling of charging infrastructure of electric cars as well as the integration of electricity-controlled heating systems. In addition, hydrogen technologies can be integrated. The laboratory is controlled by a SCADA system coupled to high-resolution measurement equipment. With the help of DLR-NESTEC, various future questions regarding robust and safe operation sector-coupled energy networks can be addressed – for instance the operation of a grid structure with a high share of controllable loads without a superordinate control.

Zusammenfassung

In diesem Beitrag wird das Emulationszentrum für Vernetzte Energiesysteme (DLR-NESTEC), eine Plattform zur Erforschung der Stromnetze der Zukunft, vorgestellt. Das DLR-NESTEC besteht aus einer Vielzahl von vernetzten leistungselektronischen Komponenten, mit denen reale Hardware über ein Echtzeit-Simulationssystem emuliert werden kann. Die Vernetzung erfolgt über Kabelemulatoren. Das Labor arbeitet mit realen Leistungsflüssen und hat eine Anschlussleistung von 800 kVA. Zusätzlich zu den Emulatoren können reale Netzkomponenten in das Labor integriert werden. Die Sektorkopplung wird durch die Kopplung der Ladeinfrastruktur von Elektroautos sowie die Integration von stromgesteuerten Heizungsanlagen adressiert. Darüber hinaus können Wasserstofftechnologien integriert werden. Die Steuerung des Labors erfolgt über ein SCADA-System, das mit hochauflösender Messtechnik gekoppelt ist. Mit Hilfe von DLR-NESTEC können verschiedene Zukunftsfragen zum robusten und sicheren Betrieb sektorgekoppelter Energienetze bearbeitet werden.


Corresponding author: Karsten von Maydell, German Aerospace Center, Institute of Networked Energy Systems, Carl-von-Ossietzky Str. 15, 26129 Oldenburg, Germany, E-mail:

Present address: Sebastian Unglaube, Hitachi Energy, Kallstadter Straße 1, 68309, Mannheim, Germany.


  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Test Center for Smart Grids and Electromobility. Available at: https://www.iee.fraunhofer.de/de/testzentren-und-labore/iee-systec.html [accessed: Nov. 2022].Search in Google Scholar

[2] Center for Electric Power and Energy. Available at: PowerLabDK [accessed: Nov. 2022].Search in Google Scholar

[3] Energy Lab 2.0. Available at: www.elab2.kit.edu [accessed: Nov. 2022].Search in Google Scholar

[4] Y. Zuo, Z. Yuan, F. Sossan, A. Zecchino, R. Cherkaoui, and M. Paolone, “Performance assessment of grid-forming and grid-following converter-interfaced battery energy storage systems on frequency regulation in low-inertia power grids,” Sustain. Energy, Grids Netw., vol. 27, p. 100496, 2021. https://doi.org/10.1016/j.segan.2021.100496.Search in Google Scholar

[5] E. A. Martinez Cesena, E. Loukarakis, N. Good, and P. Mancarella, “Integrated electricity– heat–gas systems: techno–economic modeling, optimization, and application to multienergy districts,” Proc. IEEE, vol. 108, no. 9, pp. 1392–1410, 2020. https://doi.org/10.1109/JPROC.2020.2989382.Search in Google Scholar

[6] A. A. Anderson and A. Suryanarayanan, “Review of energy management and planning of islanded microgrids: Part 1 — optimization formulations,” CSEE JPES, vol. 6, no. 2, pp. 329–343, 2020. https://doi.org/10.17775/CSEEJPES.2019.01080.Search in Google Scholar

[7] IRENA, Innovation Landscape Brief: Innovative Ancillary Services, Abu Dhabi, International Renewable Energy Agency, 2019.Search in Google Scholar

[8] M. Arnold, W. Friede, and J. Myrzik, “Investigations in low voltage distribution grids with a high penetration of distributed generation and heat pumps,” in 2013 48th International Uni-versities’ Power Engineering Conference (UPEC), Dublin, 2013, pp. 1–6.10.1109/UPEC.2013.6714884Search in Google Scholar

[9] K. Clement-Nyns, E. Haesen, and J. Driesen, “The impact of charging plug-in hybrid electric vehicles on a residential distribution grid,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 371–380, 2010. https://doi.org/10.1109/TPWRS.2009.2036481.Search in Google Scholar

[10] Speedgoat®, Real-time Target Machines. Available at: https://www.speedgoat.com/products-services/real-time-target-machines [accessed: Jan. 2022].Search in Google Scholar

[11] H. Saad, T. Ould-Bachir, J. Mahseredjian, C. Dufour, S. Dennetière, and S. Nguefeu, “Real-time simulation of MMCs using CPU and FPGA,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 259–267, 2015. https://doi.org/10.1109/tpel.2013.2282600.Search in Google Scholar

[12] T. C. Regatron, ACS Series, Technical Datasheets, Available at: https://www.regatron.com/product/overview/programmable-bidirectional-ac-power-sources/tc-acs-series/#technical-datasheets [accessed: Jan. 2022].Search in Google Scholar

[13] M. Muhammad, H. Behrends, S. Geißendörfer, K. V. Maydell, and C. Agert, “Power hardware-in-the-loop: response of power components in real-time grid simulation environment,” Energies, vol. 14, no. 3, 2021, https://doi.org/10.3390/en14030593.Search in Google Scholar

[14] A. Rubio, F. Schuldt, P. Klement, and K. von Maydell, “Optimal power dispatch in energy systems considering grid constraints,” Energies, vol. 15, no. 1, p. 192, 2022. https://doi.org/10.3390/en15010192.Search in Google Scholar

[15] M. Sechilariu, “Intelligent energy management of electrical power systems,” Appl. Sci., vol. 10, no. 8, p. 2951, 2020. https://doi.org/10.3390/app10082951.Search in Google Scholar

[16] ENaQ – Energetisches Nachbarschaftsquartier Fliegerhorst Oldenburg, Startseite, [Online]. Available at: https://www.enaq-fliegerhorst.de/ [accessed: Jan. 19, 2022].Search in Google Scholar

[17] L. Schmeling, P. Schönfeldt, P. Klement, S. Wehkamp, B. Hanke, and C. Agert, “Development of a decision-making framework for distributed energy systems in a German District,” Energies, vol. 13, no. 3, p. 552, 2020. https://doi.org/10.3390/en13030552.Search in Google Scholar

[18] U. Markovic, O. Stanojev, P. Aristidou, E. Vrettos, D. Callaway, and G. Hug, “Understanding small-signal stability of low-inertia systems,” IEEE Trans. Power Syst., vol. 36, no. 5, pp. 3997–4017, 2021. https://doi.org/10.1109/TPWRS.2021.3061434.Search in Google Scholar

[19] M. G. Dozein, P. Mancarella, T. K. Saha, and R. Yan, “System strength and weak grids: fundamentals, challenges, and mitigation strategies,” in 2018 Australasian Universities Power Engineering Conference (AUPEC), Auckland, New Zealand, 2018, pp. 1–7.10.1109/AUPEC.2018.8757997Search in Google Scholar

[20] M. Wang, K. N. Hasan, and J. V. Milanovic, 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe): Sarajevo, Bosnia and Herzegovina, October 21-25, 2018: Proceedings, Piscataway, NJ, IEEE, 2018 [Online]. Available at: http://ieeexplore.ieee.org/servlet/opac?punumber=8540978.Search in Google Scholar

[21] E. Barklund, N. Pogaku, M. Prodanovic, C. Hernandez-Aramburo, and T. C. Green, “Energy management in autonomous microgrid using stability-constrained droop control of inverters,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2346–2352, 2008. https://doi.org/10.1109/TPEL.2008.2001910.Search in Google Scholar

[22] ZUKUNFTSLABOR, ENERGIE, [Online]. Available at: https://www.zdin.de/zukunftslabore/energie [accessed: Jan. 19, 2022].Search in Google Scholar

[23] ResearchGate, (10) (PDF) Kollaborative Forschungsplattform zur Untersuchung des Einflusses der Digitalisierung auf einen robusten Netzbetrieb English title: Collaborative Research Platform for Investigating the Impact of Digitalization on Robust Network Operation, 2021, [Online], Available at: https://www.researchgate.net/publication/355986076_Kollaborative_Forschungsplattform_zur_Untersuchung_des_Einflusses_der_Digitalisierung_auf_einen_robusten_Netzbetrieb_English_title_Collaborative_Research_Platform_for_Investigating_the_Impact_of_Digit [accessed: Jan. 19, 2022].Search in Google Scholar

[24] F. Milano, F. Dorfler, G. Hug, D. J. Hill, and G. Verbic, “Foundations and challenges of low-inertia systems (invited paper),” in 2018 Power Systems Computation Conference (PSCC), Dublin, 2018, pp. 1–25.10.23919/PSCC.2018.8450880Search in Google Scholar

[25] Y. Xiang, L. Wang, and N. Liu, “A robustness-oriented power grid operation strategy considering attacks,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4248–4261, 2018. https://doi.org/10.1109/TSG.2017.2653219.Search in Google Scholar

[26] A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: a review of technologies, key drivers, and outstanding issues,” Renewable Sustainable Energy Rev., vol. 90, pp. 402–411, 2018. https://doi.org/10.1016/j.rser.2018.03.040.Search in Google Scholar

[27] O. Dag and B. Mirafzal, “On stability of islanded low-inertia microgrids,” in 2016 Clemson University Power Systems Conference (PSC), Clemson, SC, USA, 2016, pp. 1–7.10.1109/PSC.2016.7462854Search in Google Scholar

[28] ENTSO-E, Frequency Stability Evaluation Criteria for the Synchronous Zone of Continental Europe, Brussels, Belgium, ENTSO-E, 2016.Search in Google Scholar

[29] A. Monti, M. Stevic, S. Vogel, et al.., “A global real-time superlab: enabling high penetration of power electronics in the electric grid,” IEEE Power Electron. Mag., vol. 5, no. 3, pp. 35–44, 2018. https://doi.org/10.1109/MPEL.2018.2850698.Search in Google Scholar

Received: 2022-02-15
Accepted: 2022-11-07
Published Online: 2022-12-01
Published in Print: 2022-12-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.4.2025 from https://www.degruyter.com/document/doi/10.1515/auto-2022-0019/html
Scroll to top button