Abstract
We prove a discrete version of the famous Sobolev inequalities in ℝd for d ∈ ℕ*, p ∈ [1, +∞[ for general non orthogonal meshes with possibly non convex cells. We follow closely the proof of the continuous Sobolev inequality based on the embedding of BV(ℝd) into Ld/(d–1) by introducing discrete analogs of the directional total variations. In the case p ⩽ d (Gagliardo–Nirenberg inequality), we adapt the proof of the continuous case and use techniques from prior works. In the case p > d (Morrey’s inequality), we simplify and extend the proof of Porreta to more general meshes.
References
[1] H. Brezis, Functional Analysis, Sobolev Spaces and PDEs, Springer, 2010.10.1007/978-0-387-70914-7Search in Google Scholar
[2] R. A. Adams, Sobolev Spaces, Pure Appl. Math., Vol. 65, Academic Press, New York, 1975.Search in Google Scholar
[3] Y. Coudière, T. Gallouët, and R. Herbin, Discrete Sobolev inequalities and Lp error estimates for approximate finite volume solutions of convection–diffusion equations, M2AN, 35 (2001), No. 4, 767–778.10.1051/m2an:2001135Search in Google Scholar
[4] D. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations, Mathematics of Computation, 79 (2010), No. 271, 1303–1330.10.1090/S0025-5718-10-02333-1Search in Google Scholar
[5] R. Eymard, T. Gallouet, and R. Herbin, Finite Volume Methods, Handbook of Numerical Analysis, Vol. VII, 2000.10.1016/S1570-8659(00)07005-8Search in Google Scholar
[6] R. Eymard, T. Gallouët, and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA Journal of Numerical Analysis, 30 (2010), 1009–1043.10.1093/imanum/drn084Search in Google Scholar
[7] F. Bouchut, R. Eymard, and A. Prignet. Finite volume schemes for the approximation via characteristics of linear convection equations with irregular data, Journal of Evolution Equations, 11 (2011), 687–724.10.1007/s00028-011-0106-2Search in Google Scholar
[8] J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin, The Gradient Discretization Method, Springer, Vol. 20, 2018.10.1007/978-3-319-79042-8Search in Google Scholar
[9] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 2015.10.1201/b18333Search in Google Scholar
[10] M. Bessemoulin-Chatard, C. Chainais-Hillairet, and F. Filbet, On discrete functional inequalities for some finite volume schemes, IMA Journal of Numerical Analysis, 35 (2015), No. 3, 1125–1149.10.1093/imanum/dru032Search in Google Scholar
[11] M. G. Kendall, Course in the Geometry of n Dimensions, Dover Courier, 2004.Search in Google Scholar
[12] A. Porretta, A note on the Sobolev and Gagliardo–Nirenberg inequality when p > d, Advanced Nonlinear Studies 20 (2020), No. 2, 361–371.10.1515/ans-2020-2086Search in Google Scholar
[13] S. L. Sobolev, On a theorem of functional analysis, Mat. Sbornik 46 (1938), 471–496; translation in Amer. Math. Soc. Transl. 34 (1963), 39–68.Search in Google Scholar
[14] C. B. Morrey, Jr., Functions of several variables and absolute continuity, II, Duke Math. J. 6 (1940), 187–215.10.1215/S0012-7094-40-00615-9Search in Google Scholar
[15] L. Nirenberg, Inequalities for derivatives, Int. Congress of Mathematicians, Edinburgh, 1958, p. xxvii.Search in Google Scholar
[16] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 13 (1959), No. 3, 115–162.Search in Google Scholar
[17] E. Gagliardo, Propriétés de certaines classes de fonctions de n variables, Int. Congress of Mathematicians, Edinburgh, 1958, p. xxiv.Search in Google Scholar
[18] E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137.Search in Google Scholar
[19] A. Fiorenza, M. R. Formica, T. Roskovec, and F. Soudský, Detailed proof of classical Gagliardo–Nirenberg interpolation inequality with historical remarks, Zeitschrift für Analysis und ihre Anwendungen 40 (2021), No. 2, 217–236.10.4171/zaa/1681Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston