Big uncertain data of multiple sensors efficient processing with high order multi-hypothesis: an evidence theoretic approach
by Hossein Jafari; Xiangfang Li; Lijun Qian; Alexander J. Aved; Timothy S. Kroecker
International Journal of Big Data Intelligence (IJBDI), Vol. 5, No. 3, 2018

Abstract: With the proliferation of IoT, numerous sensors are deployed and big uncertain data are collected due to the different accuracy, sensitivity range, and decay of the sensors. The goal is to process the data and determine the most potential hypothesis among the set of high order multi-hypothesis. In this study, we propose a novel big uncertain sensor fusion framework to take advantage of evidence theory's capability of representing uncertainty for decision making and effectively dealing with conflict. However, the methods in evidence theory are in general very computationally expensive, thus they may not be directly applied to multiple data sources with high cardinality of hypotheses. Furthermore, we propose a Dezert-Smarandache hybrid model that can apply to applications with high number of hypotheses while the computational cost is reduced. Both synthetic and real data from experiments are used to demonstrate the feasibility of the proposed method for practical situation awareness applications.

Online publication date: Wed, 27-Jun-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Big Data Intelligence (IJBDI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com