Kybernetika - Article detail

Kybernetika 55 no. 1, 24-43, 2019

On the distributivity equation for uni-nullnorms

Ya-Ming Wang and Hua-Wen LiuDOI: 10.14736/kyb-2019-1-0024

Abstract:

A uni-nullnorm is a special case of 2-uninorms obtained by letting a uninorm and a nullnorm share the same underlying t-conorm. This paper is mainly devoted to solving the distributivity equation between uni-nullnorms with continuous Archimedean underlying t-norms and t-conorms and some binary operators, such as, continuous t-norms, continuous t-conorms, uninorms, and nullnorms. The new results differ from the previous ones about the distributivity in the class of 2-uninorms, which have not yet been fully characterized.

Keywords:

uninorms, fuzzy connectives, T-norms, T-conorms, uni-nullnorms, nullnorms, distributivity equation

Classification:

46F10, 62E86

References:

  1. J. Aczél: Lectures on Functional Equations and Their Applications. Academia, New York 1966.   DOI:10.1002/zamm.19670470321
  2. P. Akella: Structure of n-uninorms. Fuzzy Sets Syst. 158 (2007), 1631-1651.   DOI:10.1016/j.fss.2007.02.015
  3. T. Calvo, B. De Baets and J. C. Fodor: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394.   DOI:10.1016/s0165-0114(99)00125-6
  4. B. De Baets: Idempotent uninorms. Eur. J. Oper. Res. 118 (1999), 631-642.   DOI:10.1016/s0377-2217(98)00325-7
  5. P. Drygaś and E. Rak: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291 (2015), 82-97.   DOI:10.1016/j.fss.2015.02.014
  6. W. Fechner, E. Rak and L. Zedam: The modularity law in some classes of aggregation operators. Fuzzy Sets Syst. 332 (2018), 56-73.   DOI:10.1016/j.fss.2017.03.010
  7. J. C. Fodor, R. R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427.   DOI:10.1142/s0218488597000312
  8. J. C. Fodor and B. De Baets: A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99.   DOI:10.1016/j.fss.2011.12.001
  9. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer, Dordrecht 2000.   DOI:10.1007/978-94-015-9540-7
  10. G. Li, H. W. Liu and J. Fodor: Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22 (2014), 591-604.   DOI:10.1142/s0218488514500299
  11. G. Li and H. W. Liu: Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm. Fuzzy Sets Syst. 287 (2016), 154-171.   DOI:10.1016/j.fss.2015.01.019
  12. M. Mas, G. Mayor and J. Torrens: T-operators. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7 (1999), 31-50.   DOI:10.1142/s0218488599000039
  13. M. Mas, G. Mayor and J. Torrens: The distributivity condition for uninorms and t-operators. Fuzzy Sets Syst. 128 (2002), 209-225.   DOI:10.1016/s0165-0114(01)00123-3
  14. M. Mas, R. Mesiar, M. Monserat and J. Torrens: Aggregation operations with annihilator. Internat, J. Gen. Syst. 34 (2015), 17-38.   DOI:10.1080/03081070512331318347
  15. Y. M. Min and F. Qin: The distributivity for semi-nullnorms over 2-uninorms. (In Chinese.) J. Jiangxi Normal Univ. (Nature Science) 40 (2016), 3, 263267.   CrossRef
  16. F. Qin and B. Zhao: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Syst. 155 (2005), 446-458.   DOI:10.1016/j.fss.2005.04.010
  17. F. Qin: Distributivity between semi-uninorms and semi-t-operators. Fuzzy Sets Syst. 299 (2015), 66-88.   DOI:10.1016/j.fss.2015.10.012
  18. E. Rak: Distributivity equation for nullnorms. J. Electr. Eng. 56 (2005), 53-55.   DOI:10.1109/t-aiee.1936.5057143
  19. E. Rak and P. Drygaś: Distributivity equation between uninorms. J. Electr. Engrg. 57 (2006), 35-38.   CrossRef
  20. E. Rak: Some remarks about distributivity equation between uninorms. J. Electr. Engrg. 58 (2007), 41-42.   CrossRef
  21. D. Ruiz-Aguilera and J. Torrens: Distributivity of strong implications over conjunctive and disjunctive uninorms. Kybernetika 42 (2006), 319-336.   CrossRef
  22. D. Ruiz and J. Torrens: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm. IEEE Trans. Fuzzy Syst. 14 (2006), 180-190.   DOI:10.1109/tfuzz.2005.864087
  23. Y. Su, W. Zong and H. W. Liu: On distributivity equations for uninorms over semi-t-operators. Fuzzy Sets Syst. 287 (2015), 41-65.   DOI:10.1016/j.fss.2015.08.001
  24. Y. Su, W. Zong, H. W. Liu and P. Xue: On distributivity equations for semi-t-operators over uninorms. Fuzzy Sets Syst. 287 (2016), 172-183.   DOI:10.1016/j.fss.2015.03.009
  25. Y. Su, H. W. Liu, D. Ruiz-Aguilera, J. Vicente Riera and J. Torrens: On the distributivity property for uninorms. Fuzzy Sets Syst. 287 (2016), 184-202.   DOI:10.1016/j.fss.2015.06.023
  26. F. Sun, X. P. Wang and X. B. Qu: Uni-nullnorms and null-uninorms. J. Intell. Fuzzy Syst. 32 (2017), 1969-1981.   DOI:10.3233/jifs-161495
  27. F. Sun, X. P. Wang and X. B. Qu: Characterizations of uni-nullnorms with continuous Archimedean underlying t-norms and t-conorms. Fuzzy Sets Syst. 334 (2018), 24-35.   DOI:10.1016/j.fss.2017.03.001
  28. Y. M. Wang and F. Qin: Distributivity for 2-uninorms over semi-uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 25 (2017), 317-345.   DOI:10.1142/s0218488517500131
  29. A. F. Xie and H. W. Liu: On the distributivity of uninorms over nullnorms. Fuzzy Sets Syst. 211 (2013), 62-72.   DOI:10.1016/j.fss.2012.05.008
  30. R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6
  31. R. R. Yager: Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122 (2001), 167-175.   DOI:10.1016/s0165-0114(00)00027-0