Kybernetika - Article detail

Kybernetika 53 no. 6, 1100-1117, 2017

Bottom-up modeling of domestic appliances with Markov chains and semi-Markov processes

Rajmund Drenyovszki, Lóránt Kovács, Kálmán Tornai, András Oláh and István PintérDOI: 10.14736/kyb-2017-6-1100

Abstract:

In our paper we investigate the applicability of independent and identically distributed random sequences, first order Markov and higher order Markov chains as well as semi-Markov processes for bottom-up electricity load modeling. We use appliance time series from publicly available data sets containing fine grained power measurements. The comparison of models are based on metrics which are supposed to be important in power systems like Load Factor, Loss of Load Probability. Furthermore, we characterize the interdependence structure of the models with autocorrelation function as well. The aim of the investigation is to choose the most appropriate and the most parsimonious models for Smart Grid simulation purposes and applications like Demand Side Management and load scheduling. According to our results most appliance types can be modeled adequately with two states (on/off model) and the semi-Markov process can reproduce the properties of an aggregate load well compared to the original time series. With the price of more parameters of the semi-Markov model compared to identically distributed random sequence and first order Markov chain, it gives better results when the autocorrelation function, Loss of Load Probability and Load Factor are considered.

Keywords:

appliance modeling, bottom-up, Markov chain, semi-Markov process, smart grid

Classification:

60J20, 60K15, 60K20

References:

  1. O. Ardakanian, S. Keshav and C. Rosenberg: Markovian models for home electricity consumption. In: Proc. 2nd ACM SIGCOMM Workshop on Green Betworking - GreenNets '11, 2011.   DOI:10.1145/2018536.2018544
  2. M. Aydinalp, V. I. Ugursal and A. S. Fung: Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks. Applied Energy 71 (2002), 87-110.   DOI:10.1016/s0306-2619(01)00049-6
  3. A. Berchtold and A. Raftery: The mixture transition distribution model for high-order Markov chains and non-Gaussian time series. Statist. Sci. 17 (2002), 328-356.   DOI:10.1214/ss/1042727943
  4. J. Dickert and P. Schegner: Residential load models for network planning purposes. In: Proc. Modern Electric Power Systems 2010, Wroclaw, pp. 1-6.   CrossRef
  5. R. Drenyovszki, L. Kovacs, I. Pinter, A. Olah, K. Tornai and J. Levendovszky: Power system reliability assessment for the residential sector based on Large Deviation Theory bounds. In: Proc. EnergyCon 2016, IEEE International Energy Conference, Leuven 2016.   DOI:10.1109/energycon.2016.7514106
  6. A. Grandjean, J. Adnot and G. Binet: A review and an analysis of the residential electric load curve models. Renewable and Sustainable Energy Reviews 16 (2012), 9, 6539-6565.   DOI:10.1016/j.rser.2012.08.013
  7. M. Kavgic, A. Mavrogianni, D. Mumovic, A. Summerfield, Z. Stevanovic and M. Djurovic-Petrovic: A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment 45 (2010), 1683-1697.   DOI:10.1016/j.buildenv.2010.01.021
  8. J. Z. Kolter and M. J. Johnson: REDD: A public data set for energy disaggregation research. In: Proc. SustKDD Workshop on Data Mining Applications in Sustainability, 2011.   CrossRef
  9. W. Kong, Z. Y. Dong and D. J. Hill: A hierarchical hidden Markov model framework for home appliance modelling. IEEE Trans. Smart Grid PP (2016), 99, 1-1.   DOI:10.1109/tsg.2016.2626389
  10. L. Kovacs, R. Drenyovszki, A. Olah, J. Levendovszky, K. Tornai and I. Pinter: A probabilistic demand side management approach by consumption admission control. Tehnicki Vjesnik - Tehnical Gazette 24 (2017), 1, 199-207.   DOI:10.17559/tv-20151021201400
  11. A. Monacchi, D. Egarter, W. Elmenreich, S. D'Alessandro and A. M. Tonello: GREEND: An energy consumption dataset of households in Italy and Austria. In: Proc. 5th IEEE International Conference on Smart Grid Communications (SmartGridComm 14), Venice 2014.   DOI:10.1109/smartgridcomm.2014.7007698
  12. M. Nijhuis, M. Gibescu and J. F. G. Cobben: Bottom-up Markov Chain Monte Carlo approach for scenario based residential load modelling with publicly available data. Energy and Buildings 112 (2016), 121-129.   DOI:10.1016/j.enbuild.2015.12.004
  13. J. Paatero and P. Lund: A model for generating household electricity load profiles. Int. J. Energy Research 30 (2006), 273-290.   DOI:10.1002/er.1136
  14. S. N. Palacio, K. F. Valentine, M. Wong and K. M. Zhang: Reducing power system costs with thermal energy storage. Appl. Energy 129 (2014), 228-237.   DOI:10.1016/j.apenergy.2014.04.089
  15. A. Sancho-Tomas, M. Sumner and D. Robinson: A generalised model of electrical energy demand from small household appliances. Energy and Buildings 135 (2017), 350-366.   DOI:10.1016/j.enbuild.2016.10.044
  16. T. Schne, Sz. Jasko and Gy. Simon: Dynamic models of a home refrigerator. In: Proc. 5th International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (MACRo 2015), pp. 103-112.   CrossRef
  17. F. Sossan, V. Lakshmanan, G. T. Costanzo, M. Marinelli, P. J. Douglass and H. Bindner: Grey-box modelling of a household refrigeration unit using time series data in application to demand side management. Sustainable Energy, Grids and Networks 5 (2016), 1-12.   DOI:10.1016/j.segan.2015.10.003
  18. B. Stephen, S. Galloway and G. Burt: Self-learning load characteristic models for smart appliances. IEEE Trans. Smart Grid 5 (2014), 5, 2432-2439.   DOI:10.1109/tsg.2014.2318375
  19. G. Strbac: Demand side management: Benefits and challenges. Energy Policy 36 (2008), 4419-4426.   DOI:10.1016/j.enpol.2008.09.030
  20. L. G. Swan and V. Ismet Ugursal: Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable Sustainable Energy Rev. 13 (2009), 1819-1835.   DOI:10.1016/j.rser.2008.09.033
  21. Y. Zhang, W. Chen and W. Gao: A survey on the development status and challenges of smart grids in main driver countries. Renewable Sustainable Energy Rev. 79 (2017), 137-147.   DOI:10.1016/j.rser.2017.05.032