Abstract
The high-metabolic demand of neurons and their reliance on glucose as an energy source places them atrisk for dysfunction and death under conditions of metabolic and oxidative stress. Uncoupling proteins (UCPs) are mitochodrial inner membrane proteins implicated in the regulation of mitochondrial membrane potential (ΔΨm) and cellular energy metabolism. The authors cloned UCP4 cDNA from mouse and rat brain, and demonstrate that UCP4 mRNA is expressed abundantly in brain and at particularly high levels in populations of neurons believed to have high-energy requirements. Neural cells with increased levels of UCP4 exhibit decreased ΔΨm, reduced reactive oxygen species (ROS) production and decreased mitochondrial calcium accumulation. UCP4 expressing cells also exhibited changes of oxygen-consumption rate, GDP sensitivity, and response of ΔΨm to oligomycin that were consistent with mitochondrial uncoupling. UCP4 modulates neuronal energy metabolism by increasing glucose uptake and shifting the mode of ATP production from mitochodnrial respiration to glycolysis, thereby maintaining cellular ATP levels. The UCP4-mediated shift in energy metabolism reduces ROS production and increases the resistance of neurons to oxidative and mitochondrial stress. Knockdown of UCP4 expression by RNA interference in primary hippocampal neurons results in mitochondrial calcium overload and cell death. UCP4-mRNA expression is increased in neurons exposed to cold temperatures and in brain cells of rats maintained on caloric restriction, suggesting a role for UCP4 in the previously reported antiageing and neuroprotective effects of caloric restriction. By shifting energy metabolism to reduce ROS production and cellular reliance on mitochondrial respiration, UCP4 can protect neurons against oxidative stress and calcium overload.
Similar content being viewed by others
References
Alano C. C., Beutner G., Dirksen R. T., Gross R. A., and Sheu S. S. (2002) Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation. J. Neurochem. 80, 531–538.
Almeida A., Almeida J., Bolanos J. P., and Moncada S. (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. USA 98, 15,294–15,299.
Andrews Z. B., Horvath B., Barnstable C. J., et al. (2005) Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. J. Neurosci. 25, 184–191.
Andreyev A., Bondareva T., Dedukhova V. I., et al. (1989) The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria. Eur. J. Biochem. 182, 585–592.
Argiles J. M., Busquets S., and Lopez-Soriano F. J. (2002) The role of uncoupling proteins in pathophysiological states. Biochem. Biophys. Res. Commun. 293, 1145–1152.
Argyropoulos G. and Harper M. E. (2002) Uncoupling proteins and thermoregulation. J. Appl. Physiol. 92, 2187–2198.
Arsenijevic D., Onuma H., Pecqueur C., et al. (2000) Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 26, 435–439.
Beal M. F. (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta 1366, 211–223.
Bechmann I., Diano S., Warden C. H., Cartfai T., Nitsch R., and Horvath T. L. (2002) Brain mitochondrial uncoupling protein 2 (UCP2): a protective stress signal in neuronal injury. Biochem. Pharmacol. 64, 363–367.
Behrens M. L., Koh J. Y., Muller M. C., and Choi D. W. (1996) NADPH diaphorase-containing striatal or cortical neurons are resistant to apoptosis. Neurobiol. Dis. 3, 72–75.
Bose O., Samec S., Dulloo A., Seydoux J., Muzzin P., and Giacobino J. P. (1997) Tissue-dependent upregulation of rat uncoupling protein-2 expression in response to fasting or cold. FEBS Lett. 412, 111–114.
Brouillet E., Hantraye P., Ferrante R. J., et al. (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl. Acad. Sci. USA 92, 7105–7109.
Brouillet E., Conde F., Beal M. F., and Hantraye P. (1999) Replicating Huntington's disease phenotype in experimental animals. Prog. Neurobiol. 59, 427–468.
Brown G. C. and Bonitaite V. (2001) Nitric oxide, mitochondria, and cell death. IUBMB Life 52, 189–195.
Bruce-Keller A. J., Umberger G., McFall R., and Mattson M. P. (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 45, 8–15.
Besquets S., Sanchis D., Alvarez B., Ricquier D., Lopez-Soriano F. J., and Argiles J. M. (1998) In the rat, tumor necrosis factor alpha administration results in an increase in both UCP2 and UCP3 mRNAs in skeletal muscle: a possible mechanism for cytokine-induced thermogenesis? FEBS Lett. 440, 348–350.
Cadenas S. and Brand M. D. (2000) Effects of magnesium and nucleotides on the proton conductance of rat skeletal-muscle mitochondria. Biochem. J. 348, 209–213.
Cabo R. D., Fürer-Gálban S., Anson R. M., Gilman C., Gorospe M., and Lane M. A. (2003) An in vitro model of caloric restriction. Exp. Gerontol. 38, 631–639.
Chan C. B., MacDonald P. E., Saleh M. C., John D. C., Marban E., and Wheeler M. B. (1999) Overexpression of uncoupling protein 2 inhibits glucose-stimulated insulin secretion from rat islets. Diabetes 48, 1482–1486.
Chan S. L., Fu W., Zhang P., et al. (2004) Herp stabilizes neuronal Ca2+ homeostasis and mitochondrial function during endoplasmic reticulum stress. J. Biol. Chem. 279, 28,733–28,743.
Chittajallu R., Alford S., and Collingridge G. L. (1998) Ca2+ and synaptic plasticity. Cell Calcium 24, 377–385.
De Cabo R., Furer-Galban S., Anson R. M., Gilman C., Gorospe M., and Lane M. A. (2003) An in vitro model of caloric restriction. Exp. Gerontol. 38, 631–639.
Deshmukh M. and Johnson E. M. (1997) Programmed cell death in neurons: focus on the pathway of nerve growth factor deprivation-induced death of sympathetic neurons. Mol. Pharmacol. 51, 897–906.
Diano S., Matthews R. T., Patrylo P., et al. (2003) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144, 5014–5021.
Dubinsky J. M. and Rothman S. M. (1991) Introcelullar calcium concentrations during “chemical hypoxia” and excitotoxic neuronal injury. J. Neurosci. 11, 2545–2551.
Duffy P. H., Feuers R., Nakamura K. D., Leakey J., and Hart R. W. (1990) Effect of chronic caloric restriction on the synchronization of various physiological measures in old female fischer 344 rats. Chronob. Int. 7, 113–124.
Dulloo A. G., Samec S., and Seydoux J. (2001) Uncoupling protein 3 and fatty acid metabolism. Biochem. Soc. Trans. 29, 785–791.
Echtay K. S., Roussel D., St-Pierre J., et al. (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96–99.
Echtay K. S., Esteves T., Pakay J. L., et al. (2003) A signaling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 22, 4103–4110.
Ellison G. (1994) Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Res. Rev. 19, 223–239.
Erlanson-Albertsson C. (2003) The role of uncoupling proteins in the regulation of metabolism. Acta Physiol. Scand. 178, 405–412.
Fransteva M. V., Carlen P. L., and Perez Velazquez J. L. (2001) Dynamics of intracellular calcium and free radical production during ischemia in pyramidal neurons. Free Radic. Biol. Med. 31, 1216–1227.
Garlid K. D., Jaburek M., and Jezek P. (2001) Mechanism of uncoupling protein action. Biochem. Soc. Trans. 29, 803–806.
Gibson G. E. (2002) Interactions of oxidative stress with cellular calcium dynamics and glucose metabolism in Alzheimer's disease. Free Radic. Biol. Med. 32, 1061–1070.
Giovannini C., Matarrese P., Scazzocchio B., Sanchez M., Masella R., and Malorni W. (2002) Mitochondria hyperpolarization is an early event in oxidized low-density lipoprotein-induced apoptosis in CaCo2 intestinal cells. FEBS Lett. 523, 200–206.
Cjeode A. and Marrett S. (2001) Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checker-board stimulation in vivo. Cereb. Blood Flow Metab. 21, 1384–1392.
Hagen T. and Lowell B. B. (2000) Chimeric proteins between UCP1 and UCP3: the middle third of UCP1 is necessary and sufficient for activation by fatty acids. Biochem. Biophys. Res. Commun. 276, 642–648.
Han D., Nolte L. A., Ju J., Coleman T., Holloszy J. O., and Semenkovich C. F. (2003) UCP-mediated energy depletion in skeletal muscle increases glucose transport despite lipid accumulation and mitochondrial dysfunction. Am. J. Physiol. Endocrinol. Metab. 286, E347-E353.
Hanak P. and Ježek P. (2001) Mitochondrial uncoupling proteins and phylogenesis—UCP4 as the ancestral uncoupling protein. FEBS Lett. 495, 137–141.
Haydon P. G. and Zoran M. J. (1994) Retrograde regulation of presynaptic development during synaptogenesis. J. Neurobiol. 25, 694–706.
Herst P. M., Tan A. S., Scarlett D. G., and Berridge M. V. (2004) cell surface oxygen consumption by mitochondrial gene knockout cells. Biochim. Biophys. Acta 1656, 70–87.
Hou S. T. and MacManus J. P. (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int. Rev. Cytol. 221, 93–148.
Huppertz C., Fischer B. M., Kim Y. B., et al. (2001) uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism. J. Biol. Chem. 276, 12,520–12,529.
II-chenko A. P., Ogorelyshev D. I., Shishkanova N. V., Sokolov A. P., Finogenova T. V., and Kondrashova M. N. (2005) The effect of succinate on respiration, transamination, and pyruvate formation in cells of the yeast Dipodascus magnusii. Mikrobiologiia 74, 609–615.
IIjima T., Mishima T., Akagawa K., and Iwao Y. (2003) Mitochondrial hyperpolarization after transient oxygen-glucose deprivation and subsequent apoptosis in cultured rat hippocampal neurons. Brain Res. 993, 140–145.
Kann O., Schuchmann S., Bucheim K., and Heinemann U. (2003) Coupling of neuronal activity and mitochondrial metabolism as revealed by NAD(P)H fluorescence signals in organotypic hippocampal slice cultures of the rat. Neuroscience 119, 87–100.
Keller J. N., Kindy M. S., Holtsberg F. W., et al. (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18, 687–697.
Kim G. W. and Chan P. H. (2001) Oxidative stress and neuronal DNA fragmentation mediate age-dependent vulnerability to the mitochondrial toxin, 3-nitropropionic acid, in the mouse striatum. Neurobiol. Dis. 8, 114–126.
Kim-Han J. S., Reichert S. A., Quick K. L., and Dugan L. L. (2001) BMCP1: a mitochondrial uncoupling protein in neurons which regulates mitochondrial function and oxidant production. J. Neurochem. 79, 658–668.
Knapp L. T. and Klann E. (2002) Role of reactive oxygen species in hippocampal long-term potentiation contributory or inhibitory? J. Neurosci. Res. 70, 1–7.
Kokaia Z., Andsberg G., Martinez-Serrano A., and Lindvall O. (1998) Focal cerebral ischemia in rats induces expression of P75 neurotrophin receptor in resistant striatal cholinergic neurons. Neuroscience 84, 1113–1125.
Korshunov S. S., Skulachev V. P., and Starkov A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416, 15–18.
Korshunov S. S., Korkina O. V., Ruuge E. K., Skulachev V. P., and Starkov A. A. (1998) Fatty acids as natural uncouplers preventing generation of O2 − and H2O2 by mitochondria in the resting state. FEBS Lett. 435, 215–218.
Kowaltowski A. J., Smaili S. S., Russell J. T., and Fiskum G. (2000) Elevation of resting mitochondrial membrane potential of neural cells by cyclosporin A, BAPTA-AM, and bcl-2. Am. J. Physiol. Cell Physiol. 279, C852-C859.
Kowaltowski A. J., Cosso R. G., Campos C. B., and Fiskum G. (2002) Effect of bcl-2 overexpression on mitochondrial structure and function. J. Biol. Chem. 277, 42,802–42,807.
Kristian T. and Siesjö B. K. (1998) Calcium in ischemic cell death. Stroke 29, 705–718.
Krohn A. L., Wahlbrink T., and Prehn J. H. M. (1999) Mitochondrial depolarization is not required for neuronal apoptosis. J. Neurosci. 19, 7394–7404.
Kruman I. I., Bruce-Keller A. J., Bredesen D., Waeg G., and Mattson M. P. (1997) Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 17, 5089–5100.
Kruman I. I. and Mattson M. P. (1999) Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 72, 529–540.
Li B., Nolte L. A., Ju J., et al. (2000) Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat. Med. 6, 1115–1120.
Li L., Prabhakaran K., Shou Y., Borowitz J. L., and Isom G. E. (2002) Oxidative stress and cyclooxygenase-2 induction mediate cyanide-induced apoptosis of cortical cells. Toxicol. Appl. Pharmacol. 185, 55–63.
Lin S. and Huang X. F. (1997) Fasting increases leptin receptor mRNA expression in lean but not obese (ob/ob) mouse brain. Neuroreport 8, 3625–3629.
Liu D., Lu C., Wan R., Auyeung W. W., and Mattson M. P. (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J. Cereb. Blood Flow Metab. 22, 431–443.
Lynch R. M., Tompkins L. S., Brooks H. L., Dunn-Meynell A. A., and Levin B. E. (2000) Localization of glucokinase gene expression in the rat brain. Diabetes 49, 693–700.
Mao W., Yu X. X., Zhong A., et al. (1999) UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett. 443, 326–330.
Mark R. J., Pang Z., Geddes J. W., Uchida K., and Mattson M. P. (1997) Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.
Maswood N., Young J., Tilmont E., et al. (2004) Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc. Natl. Acad. Sci. USA 101, 18,171–18,176.
Mattiasson G., Shamboo M., Gido G., et al. (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat. Med. 9, 1062–1068.
Mattson M. P., Barger S. W., Begley J. G., and Mark R. L. (1995) Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods Cell Biol. 46, 187–216.
Mattson M. P. and Liu D. (2002) Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Med. 2, 215–231.
Mattson M. P. (2003) Gene-diet interactions in brain aging and neurodegenerative disorders. Ann. Intern. Med. 139, 441–444.
Mattson M. P. and Kroemer G. (2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol. Med. 9, 196–205.
Merchenthaler I., Lane M., and Shughrue P. (1999) Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403 261–280.
Merry B. J. (2004) Oxidative stress and mitochondrial function with aging—the effects of calorie restriction. Aging Cell 3, 7–12.
Millet L., Vidal H., Andreelli F., et al. (1997) Increased uncoupling protein-2 and 3 mRNA expression during fasting in obese and lean humans. J. Clin. Invest. 100, 2665–2670.
Miwa S. and Brand M. D. (2003) Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem. Soc. Trans. 31, 1300–1301.
Mizuno T., Miura-Suzuki T., Yamashita H., and Mori N. (2000) Distinct regulation of brain mitochondrial carrier protein-1 and uncoupling protein-2 genes in the rat brain during cold exposure and aging. Biochem. Biophys. Res. Commun. 278, 691–697.
Murphy A. N. and Fiskum G. (1999) Bcl-2 and Ca(2+)-mediated mitochondrial dysfunction in neural cell death. Biochem. Soc. Symp. 66, 33–41.
Nasr P., Gursahani H. I., Pang Z., et al. (2003) Influence of cytosolic and mitochondrial Ca2+, ATP, mitochondrial membrane potential, and calpain activity on the mechanism of neuron death induced by 3-nitropropionic acid. J. Neurochem. 43, 89–99.
Negre-Salvayre A., Hirtz C., Carrera G., et al. (1997) A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 11, 809–815.
Nicholls D. G. and Locke R. M. (1984) Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1–64.
Nicholls D. G. and Budd S. L. (1998) Mitochondria and neuronal glutamate excitotoxicity. Biochim. Biophys. Acta 1366, 97–112.
O'Brien J., Wilson I., Orton T., and Pognan F. (2000) Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267, 5421–5426.
Pecqueur C., Couplan E., Bouillaud F., and Ricquier D. (2001) Genetic and physiological analysis of the role of uncoupling proteins in human energy homeostasis. J. Mol. Med. 79, 48–56.
Peng T. L., Jou M. J., Sheu S. S., and Greenamyre J. T. (1998) Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons. Exp. Neurol. 149, 1–12.
Pereira C., Santos M. S., and Oliverira C. (1999) Involvement of oxidative stress on the impairment of energy metabolism induced by Aβ peptides on PC12 cells: protection by antioxidants. Neurobiol. Dis. 6, 209–219.
Pisani A., Bonsi P., Bernardi G., and Calabresi P. (2002) Impairment of mitochondrial metabolism differentially affects striatal neuronal subtypes. Neuroreport 13, 641–644.
Poppe M., Reimertz C., Dussmann H., et al. (2001) Dissipation of potassium and proton gradients inhibits mitochondrial hyperpolarization and cytochrome crelease during neural apoptosis. J. Neurosci. 21, 4551–4563.
Rea S. and Johnson T. E. (2003) A metabolic model for life span determination in Caenorhabditis elegans. Dev. Cell 5, 197–203.
Richard D., Rivest R., Huang Q., et al. (1998) Distribution of the uncoupling protein 2 mRNA in the mouse brain. J. Comp. Neurol. 397, 549–560.
Rial E. and Nicholls D. G. (1984) The mitochondrial uncoupling protein from guinea-pig brown adiposetissue. Synchronous increase in structural and functional parameters during cold-adaptation. Biochem. J. 222, 685–693.
Rial E., González-Barroso M., Fleury C., et al. (1999) Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J. 18, 5827–5833.
Richard D., Rivest R., Huang Q., et al. (1998) Distribution of the uncoupling protein 2 mRNA in the mouse brain. J. Comp. Neurol. 397, 549–560.
Roth G. S., Lane M. A., Ingram D. K., et al. (2002) Biomarkers of caloric restriction may predict longevity in humans. Science 297, 811.
Roussel D., Harding M., Runswick M. J., Walker J. E., and Brand M. D. (2002) Does any yeast mitochondrial carrier have a native uncoupling protein function. J. Bioenerg. Biomembr. 34, 165–176.
Samartsev V. N., Mokhova E. N., and Skulachev V. P. (1997) The pH-dependent reciprocal changes in contributions of ADP/ATP antiporter and aspartate/glutamate antiporter to fatty acid-induced uncoupling. JEBS Lett. 412, 179–182.
Sanchis D., Fleury C., Chomiki N., et al. (1998) BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J. Biol. Chem. 273, 34,611–23,615.
Simpson P. B. (2000) The local control of cytosolic Ca2+ as a propagator of CNS communication—integration of mitochondrial transport mechanisms and cellular responses. J. Bioenerg. Biomembr. 32, 5–13.
Sokolova I. M. and Sokolov E. P. (2005) Evolution of mitochondrial uncoupling protein: novel invertebrate UCP homologues suggest early evolutionary divergence of the UCP family. FEBS Lett. 579, 313–317.
Starkov A. A. (1997) Mild uncoupling of mitochondria. Biosci. Rec. 17, 273–279.
Starkov A. A. and Fiskum G. (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J. Neurochemi. 86, 1101–1107.
Stuart J. A., Harper J. A., Brindle K. M., Jekabsons M. B., and Brand M. D. (2001) A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem. J. 356, 779–789.
Sullivan P. G., Dube C., Dorenbos K., Steward O., and Baram T. Z. (2003) Mitochondrial uncoupling protein-2 contributes crucially to the resistance of immature brain to excitotoxic neuronal death. Ann. Neurol. 53, 711–717.
Vercesi A. E., Bernardes C. F., Hoffmann M. E., Gadelha F. R., and Docampo R. (1991) Digitonin permeabilization does not affect mitochondrial function and allow the determination of the mitochondrial potential of Trypanosome cruzi in situ. J. Biol. Chem. 266, 14,431–14,434.
Vianello A., Petrussa E., and Macri F. (1994) ATP/ADP antiporteris involved in uncoupling of plant mitochondria induced by low concentratios of palmitate. FEBS Lett. 349, 407–410.
Vidal-Puig A. J., Grujic D., Zhang C., et al. (2000) Energy metabolism in uncouple protein 3 gene knockout mice. J. Biol. Chem. 275, 16,258–16,266.
Vincent A. M., Olzmann J. A., Brownlee M., Sivitz W. I., and Russell J. W. (2004) Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 53, 726–734.
Weigle D. S., Selfridge L. E., Schwartz M. W., et al. (1998) Elevated free fatty acids induce uncoupling protein 3 expression in muscle: a potential explanation for the effect of fasting. Diabetes 47, 298–302.
Weindruch R. and Sohal R. S. (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med. 337, 986–994.
White M. J., Dicaprio M. J., and Greenberg D. A. (1996) Assessment of neuronal viability with Alamar blue in cortical and granule cell cultures. J. Neurosci. Methods 70, 195–200.
Wieckowski M. R. and Wojtczak L. (1997) Involvement of the dicarboxylate carrier in the protonophoric action of long-chain fatty acids in mitochondria. Biochem. Biophys. Res. Commun. 232, 414–417.
Yang X., Pratley R. E., Tokraks S., Tataranni P. A., and Permana P. A. (2002) UCP5/BMCP1 transcript isoforms in human skeletal muscle: relationship of the short-insert isoform with lipid oxidation and resting metabolic rates. Mol. Genet. Metab. 75, 369–373.
Yang F., He X. P., Russell J., and Lu B. (2003) Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na(+)−Ca2+ exchanger and protein kinase C. J. Cell Biol. 163, 511–523.
Yu Z. F. and Mattson M. P. (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J. Neurosci. Res. 57, 830–839.
Yu X. X., Lewin D. A., Zhong A., et al. (2001) Overex-pression of the human 2-oxoglutarate carrier lowers mitochondrial membrane potential in HEK-293 cells: contrast with the unique cold-induced mitochondrial carrier CG1-69. Biochem. J. 353, 369–375.
Yu X. X., Mao W., Zhong A., et al. (2000) Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J. 14, 1611–1618.
Zhang C., Baffy G., Perret P., et al. (2001) Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, β cell dysfunction, and type 2 diabetes. Cell 105, 745–755.
Zorumski C. F. and Izumi Y. (1998) Modulation of LTP induction by NMDA receptor activation and nitric oxide release. Prog. Brain Res. 118, 173–182.
Author information
Authors and Affiliations
Corresponding author
Additional information
These authors made equal contributions to this research.
Rights and permissions
About this article
Cite this article
Liu, D., Chan, S.L., de Souza-Pinto, N.C. et al. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromol Med 8, 389–413 (2006). https://doi.org/10.1385/NMM:8:3:389
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1385/NMM:8:3:389