室内信息服务的基础——低成本定位技术研究综述

计算机科学 ›› 2022, Vol. 49 ›› Issue (9): 228-235.doi: 10.11896/jsjkx.210900260

• 计算机网络 • 上一篇    下一篇

室内信息服务的基础——低成本定位技术研究综述

邵子灏1, 杨世宇1, 马国杰2   

  1. 1 广州大学网络空间先进技术研究院 广州 510006
    2 华东师范大学经济与管理学部 上海 200062
  • 收稿日期:2021-09-30 修回日期:2022-04-10 出版日期:2022-09-15 发布日期:2022-09-09
  • 通讯作者: 杨世宇(syyang@gzhu.edu.cn)
  • 作者简介:(2112006188@e.gzhu.edu.cn)
  • 基金资助:
    国家自然科学基金(NSFC61802127)

Foundation of Indoor Information Services:A Survey of Low-cost Localization Techniques

SHAO Zi-hao1, YANG Shi-yu1, MA Guo-jie2   

  1. 1 Cyberspace Institute of Advanced Technology,Guangzhou University,Guangzhou 510006,China
    2 Faculty of Economics and Management,East China Normal University,Shanghai 200062,China
  • Received:2021-09-30 Revised:2022-04-10 Online:2022-09-15 Published:2022-09-09
  • About author:SHAO Zi-hao,born in 1997,postgra-duate.His main research interests include low-cost indoor localization and so on.
    YANG Shi-yu,born in 1986, Ph.D,professor,is a member of China Computer Federation and IEEE.His main research interests include spatial databa-ses,location-based services and graph databases.
  • Supported by:
    National Natural Science Foundation of China(NSFC61802127).

摘要: 近年来,随着物联网技术的发展与智慧城市概念的提出,基于位置的服务快速发展,尤其是由基于卫星信号的全球定位系统(GPS)提供定位的室外位置服务已经深入日常生活的方方面面。然而,GPS在室内定位中受复杂的室内环境影响有着较大的误差,为了提高室内位置服务的定位精度,多种室内定位技术被相继提出。其中,利用现有设备(如Wi-Fi、低能耗蓝牙(BLE)和智能手机等)提供的多种信号信息,通过数据分析、机器学习等技术来提供室内定位服务,具有成本低、部署使用便捷等优点,受到了越来越多的关注。文中梳理了近年来低成本室内定位技术的相关成果,介绍了其基本原理、实现方法以及能达到的定位精度,分析了各种技术的优缺点,并对未来发展趋势进行了展望。

关键词: 室内信息服务, 室内定位, 基于位置服务, 低成本定位

Abstract: Recently,with the development of Internet of things technology and the proposal of smart city concept,location-based service is developing rapidly,especially,the outdoor location services provided by global positioning system (GPS) based on satellite signals have penetrated into every aspect of out daily life.However,GPS is not applicable for indoor space due to the low localization accuracy,affected by the complex indoor environment.In order to improve the localization accuracy,indoor localization techniques are proposed.The techniques which utilize the existing devices such as Wi-Fi,low energy Bluetooth (BLE) are attracting more and more attention due to their advantages of low cost and easy deployment.This paper surveys the recent research work of low-cost indoor localization techniques with the basic motivations,implementations and their localization performance.Finally,the future development trend is prospected.

Key words: Indoor information services, Indoor localization, Location-based service, Low-cost localization

中图分类号: 

  • TP301.6
[1]LI Y,YANG S,CHEEMA M A,et al.IndoorViz:A Demonstration System for Indoor Spatial Data Management[C]//Procee-dings of the 2021 International Conference on Management of Data.2021:2755-2759.
[2]SHAO Z,CHEEMA M A,TANIAR D,et al.Efficiently pro-cessing spatial and keyword queries in indoor venues[J].IEEE Transactions on Knowledge and Data Engineering,2020,33(9):3229-3244.
[3]MOTRONI A,BUFFI A,NEPA P.A survey on indoor vehicle localization through RFID technology[J].IEEE Access,2021,9:17921-17942.
[4]BERNARDINI F,BUFFI A,FONTANELLI D,et al.Robot-based indoor positioning of UHF-RFID tags:The SAR method with multiple trajectories[J].IEEE Transactions on Instrumentation and Measurement,2020,70:1-15.
[5]LEE G T,SEO S B,JEON W S.Indoor Localization by Kalman Filter based Combining of UWB-Positioning and PDR[C]//2021 IEEE 18th Annual Consumer Communications & Networking Conference.2021:1-6.
[6]POULOSE A,EMERŠIĆ Ž,EYOBU O S,et al.An Accurate Indoor User Position Estimator For Multiple Anchor UWB Localization[C]//2020 International Conference on Information and Communication Technology Convergence.2020:478-482.
[7]HUANG S,CHEN J,JIANG H.UWB indoor location based on improved least square support vector machine considering anchor anomaly[C]//2020 IEEE 16th International Conference on Control & Automation.2020:324-329.
[8]NOR A M,MOHAMED E M.Li-Fi positioning for efficient millimeter wave beamforming training in indoor environment[J].Mobile Networks and Applications,2019,24(2):517-531.
[9]PALACIOS J,BIELSA G,CASARI P,et al.Single-and multiple-access point indoor localization for millimeter-wave networks[J].IEEE Transactions on Wireless Communications,2019,18(3):1927-1942.
[10]LIN Y,JIN S,MATTHAIOU M,et al.Channel Estimation and Indoor Positioning for Wideband Multiuser Millimeter Wave Systems[C]//2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop.2020:1-5.
[11]TSAI T T,SHEN L H,CHIU C J,et al.Beam AoD-based Indoor Positioning for 60 GHz MmWave System[C]//2020 IEEE 92nd Vehicular Technology Conference.2020:1-5.
[12]ZHANG Y,GONG X,LIU K,et al.Localization and Tracking of an Indoor Autonomous Vehicle Based on the Phase Difference of Passive UHF RFID Signals[J].Sensors,2021,21(9):3286.
[13]MOTRONI A,BUFFI A,NEPA P,et al.Sensor-fusion andtracking method for indoor vehicles with low-density UHF-RFID tags[J].IEEE Transactions on Instrumentation and Measurement,2020,70:1-14.
[14]DJOSIC S,STOJANOVIC I,JOVANOVIC M,et al.Finger-printing-assisted UWB-based localization technique for complex indoor environments[J].Expert Systems with Applications,2021,167:114188.
[15]YANG G,ZHU S,LI Q,et al.UWB/INS Based Indoor Positioning and NLOS Detection Algorithm for Firefighters[C]//2020 IEEE 22nd International Conference on High Performance Computing and Communications.IEEE 18th International Confe-rence on Smart City.IEEE 6th International Conference on Data Science and Systems.2020:909-916.
[16]JU S,XING Y,KANHERE O,et al.Millimeter wave and sub-terahertz spatial statistical channel model for an indoor office building[J].IEEE Journal on Selected Areas in Communications,2021,39(6):1561-1575.
[17]DEVOTI F,SCIANCALEPORE V,FILIPPINI I,et al.PASID:Exploiting Indoor mmWave Deployments for Passive Intrusion Detection[C]//2020 IEEE Conference on Computer Communications.2020:1479-1488.
[18]WANG P,KOIKE-AKINO T,ORLIK P V.Fingerprinting-Based Indoor Localization with Commercial MMWave WiFi:NLOS Propagation[C]//2020 IEEE Global Communications Conference(GLOBECOM 2020).2020:1-6.
[19]LI C,XU Q,GONG Z,et al.TuRF:Fast data collection for fingerprint-based indoor localization[C]//2017 International Conference on Indoor Positioning and Indoor Navigation.2017:1-8.
[20]LYMBEROPOULOS D,LIU J.The microsoft indoor localiza-tion competition:Experiences and lessons learned[J].IEEE Signal Processing Magazine,2017,34(5):125-140.
[21]DAVIDSON P,PICHÉ R.A survey of selected indoor positioning methods for smartphones[J].IEEE Communications Surveys & Tutorials,2016,19(2):1347-1370.
[22]NGAMAKEUR K,YONGCHAREON S,YU J,et al.A Survey on Device-Free Indoor Localization and Tracking in the Multi-Resident Environment[J].ACM Computing Surveys,2020,53(4):1-29.
[23]GHOURCHIAN N,ALLEGUE-MARTINEZ M,PRECUP D.Real-Time Indoor Localization in Smart Homes Using Semi-Supervised Learning[C]//AAAI Conference on Artificial Intelligence.2017:4670-4677.
[24]CHEN X,MA C,ALLEGUE M,et al.Taming the inconsistency of Wi-Fi fingerprints for device-free passive indoor localization[C]//IEEE Conference on Computer Communications.2017:1-9.
[25]CHEN X,LI H,ZHOU C,et al.FiDo:Ubiquitous Fine-Grained Wi-Fi-based Localization for Unlabelled Users via Domain Adaptation[C]//The Web Conference.2020:23-33.
[26]NOWICKI M,WIETRZYKOWSKI J.Low-effort place recognition with Wi-Fi fingerprints using deep learning[C]//International Conference Automation.2017:575-584.
[27]WEI X,RADU V.Calibrating Recurrent Neural Net-works on Smartphone Inertial Sensors for Location T-racking[C]//International Conference on Indoor Positioning and Indoor Navigation.2019:1-8.
[28]QU X,GONG X,WANG Z,et al.Inertial Sensing Approach for Indoor Localization[C]//Proceedings of the 2018 International Conference on Information Processing in Sensor Networks.2018:11-13.
[29]YANG Y,DING Y,YUAN D,et al.TransLoc:transparent indoor localization with uncertain human participation for instant delivery[C]//Proceedings of the 26th Annual International Conference on Mobile Computing and Networking.2020:1-14.
[30]JIANG X,LIU J,CHEN Y,et al.Feature adaptive online se-quential extreme learning machine for lifelong indoor localization[J].Neural Computing and Applications,2016,27(1):215-225.
[31]WANG H,SEN S,ELGOHARY A,et al.No need to war-drive:Unsupervised indoor localization[C]//Proceedings of the 10th International Conference on Mobile Systems,Applications,and Services.2012:197-210.
[32]XIE H,GU T,TAO X,et al.MaLoc:A practical magnetic fingerprinting approach to indoor localization using smartphones[C]//Proceedings of the 2014 ACM International Joint Confe-rence on Pervasive and Ubiquitous Computing.2014:243-253.
[33]HASHEM O,YOUSSEF M,HARRAS K A.WiNar:RTT-based sub-meter indoor localization using commercial devices[C]//2020 IEEE International Conference on Pervasive Computing and Communications.2020:1-10.
[34]GENTNER C,ULMSCHNEIDER M,KUEHNER I,et al.Wifi-rtt indoor positioning[C]//2020 IEEE/ION Position,Location and Navigation Symposium.2020:1029-1035.
[35]CAO H,WANG Y,BI J.Smartphones:3D Indoor LocalizationUsing Wi-Fi RTT[J].IEEE Communications Letters,2020,25(4):1201-1205.
[36]GUO G,CHEN R,YE F,et al.Indoor smartphone localization:A hybrid WiFi RTT-RSS ranging approach[J].IEEE Access,2019,7:176767-17678.
[37]AKYILDIZ I F,JORNET J M,HAN C.Terahertz band:Next frontier for wireless communications[J].Physical Communication,2014,12:16-32.
[38]AKYILDIZ I F,HAN C,NIE S.Combating the distance problem in the millimeter wave and terahertz frequency bands[J].IEEE Communications Magazine,2018,56(6):102-108.
[39]HAN C,BICEN A O,AKYILDIZ I F.Multi-ray channel mode-ling and wideband characterization for wireless communications in the terahertz band[J].IEEE Transactions on Wireless Communications,2014,14(5):2402-2412.
[40]JORNET J M,AKYILDIZ I F.Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band[J].IEEE Transactions on Wireless Communications,2011,10(10):3211-3221.
[41]FAN S,WU Y,HAN C,et al.A structured bidirectional LSTM deep learning method for 3D terahertz indoor localization[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications.2020:2381-2390.
[42]FAN S,WU Y,HAN C,et al.SIABR:A Structured Intra-Attention Bidirectional Recurrent Deep Learning Method for Ultra-Accurate Terahertz Indoor Localization[J].IEEE Journal of Selected Areas in Communications,2021,39(7):2226-2240.
[43]TAIRA H,OKUTOMI M,SATTLER T,et al.InLoc:Indoor visual localization with dense matching and view synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7199-7209.
[44]WEINZAEPFEL P,CSURKA G,CABON Y,et al.Visual localization by learning objects-of-interest dense match regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5634-5643.
[45]LI S,HE W.VideoLoc:Video-based Indoor Localization withText Information[C]//IEEE INFOCOM 2021-IEEE Confe-rence on Computer Communications.2021:1-10.
[46]REDŽIĆ M D,LAOUDIAS C,KYRIAKIDES I.Image and wlan bimodal integration for indoor user localization[J].IEEE Transactions on Mobile Computing,2019,19(5):1109-1122.
[47]HAAS H,YIN L,WANG Y,et al.What is lifi?[J].Journal of Lightwave Technology,2016,34(6):1533-1544.
[48]ARFAOUI M A,SOLTANI M D,TAVAKKOLNIA I,et al.Invoking deep learning for joint estimation of indoor lifi user position and orientation[J].IEEE Journal on Selected Areas in Communications,2021,39(9):2890-2905.
[49]KOUHINI S M,MA Z,KOTTKE C,et al.LiFi based Positioning for Indoor Scenarios[C]//2021 17th International Symposium on Wireless Communication Systems.2021:1-5.
[50]CHEN M,LIU K,MA J,et al.SWIM:Speed-aware WiFi-based passive indoor localization for mobile ship environment[J].IEEE Transactions on Mobile Computing,2019,20(2):765-779.
[51]PENDĀO C,MOREIRA A.FastGraph enhanced:High accuracy automatic indoor navigation and mapping[J].IEEE Transactions on Mobile Computing,2019,20(3):1027-1045.
[52]PENDĀO C,MOREIRA A.FastGraph-Organic 3D Graph forUnsupervised Location and Mapping[C]//2018 International Conference on Indoor Positioning and Indoor Navigation.2018:206-212.
[53]NIEMINEN R,JRVINEN K.Practical privacy-preserving in-door localization based on secure two-party computation[J].IEEE Transactions on Mobile Computing,2020,20(9):2877-2890.
[54]JÄRVINEN K,LEPPÄKOSKI H,LOHAN E S,et al.PILOT:Practical privacy-preserving indoor localization usingoutsour-cing[C]//2019 IEEE European Symposium on Security and Privacy.2019:448-463.
[55]ZHAO P,JIANG H,LUI J C S,et al.P3-LOC:A privacy-preserving paradigm-driven framework for indoor localization[J].IEEE/ACM Transactions on Networking,2018,26(6):2856-2869.
[1] 唐清华, 王玫, 唐超尘, 刘鑫, 梁雯.
基于M2M相遇区的PDR室内定位方法
PDR Indoor Positioning Method Based on M2M Encounter Region
计算机科学, 2022, 49(9): 283-287. https://doi.org/10.11896/jsjkx.210800270
[2] 周楚霖, 陈敬东, 黄凡.
基于无迹粒子滤波的WiFi-PDR融合室内定位技术
WiFi-PDR Fusion Indoor Positioning Technology Based on Unscented Particle Filter
计算机科学, 2022, 49(6A): 606-611. https://doi.org/10.11896/jsjkx.210700108
[3] 李丽, 郑嘉利, 罗文聪, 全艺璇.
基于近端策略优化的RFID室内定位算法
RFID Indoor Positioning Algorithm Based on Proximal Policy Optimization
计算机科学, 2021, 48(4): 274-281. https://doi.org/10.11896/jsjkx.200300028
[4] 徐鹤, 吴满星, 李鹏.
基于ARIMA模型的RFID室内相对位置定位算法
RFID Indoor Relative Position Positioning Algorithm Based on ARIMA Model
计算机科学, 2020, 47(9): 252-257. https://doi.org/10.11896/jsjkx.200400038
[5] 李丽,郑嘉利,王哲,袁源,石静.
基于异步优势动作评价的RFID室内定位算法
RFID Indoor Positioning Algorithm Based on Asynchronous Advantage Actor-Critic
计算机科学, 2020, 47(2): 233-238. https://doi.org/10.11896/jsjkx.190100070
[6] 王文博, 黄璞, 杨章静.
基于超宽带、里程计、RGB-D融合的室内定位方法
Indoor Positioning Method Based on UWB Odometer and RGB-D Fusion
计算机科学, 2020, 47(11A): 334-338. https://doi.org/10.11896/jsjkx.200200033
[7] 翟书颖, 李茹, 李波, 郝少阳.
视觉群智感知应用综述
Survey on Applications of Visual Crowdsensing
计算机科学, 2019, 46(6A): 11-15.
[8] 王哲, 郑嘉利, 李丽, 袁源, 石静.
蝗虫群优化和极限学习机相结合的RFID室内定位算法
RFID Indoor Positioning Algorithm Combining Grasshopper Optimization Algorithm and Extreme Learning Machine
计算机科学, 2019, 46(12): 120-125. https://doi.org/10.11896/jsjkx.181202381
[9] 王波涛,梁伟,赵凯利,钟汉辉,张玉圻.
基于HBase的支持频繁更新与多用户并发的R树
R-tree for Frequent Updates and Multi-user Concurrent Accesses Based on HBase
计算机科学, 2018, 45(7): 42-52. https://doi.org/10.11896/j.issn.1002-137X.2018.07.007
[10] 付先凯, 蒋鑫龙, 刘军发, 张少博, 陈益强.
基于多维尺度分析的自适应室内群终端定位方法
Adaptive Indoor Location Method for Multiple Terminals Based on Multidimensional Scaling
计算机科学, 2018, 45(10): 104-110. https://doi.org/10.11896/j.issn.1002-137X.2018.10.020
[11] 陈诗军, 王慧强, 王园园, 胡海婧.
一种面向室内定位的基站选择优化方法
Base Station Selection Optimization Method Oriented at Indoor Positioning
计算机科学, 2018, 45(10): 115-119. https://doi.org/10.11896/j.issn.1002-137X.2018.10.022
[12] 夏俊, 刘军发, 蒋鑫龙, 陈益强.
针对设备差异性问题的增量式室内定位方法
Incremental Indoor Localization for Device Diversity Issues
计算机科学, 2018, 45(10): 69-77. https://doi.org/10.11896/j.issn.1002-137X.2018.10.014
[13] 宦若虹,陈月.
基于地图信息和位置自适应修正的粒子滤波室内定位方法
Indoor Localization Based on Map Information and Particle Filter with Position Adaptive Correction
计算机科学, 2017, 44(Z11): 297-301. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.063
[14] 周阿鹏,覃锡忠,贾振红,NIKOLA Kasabov.
基于众包的嵌套流形匹配室内定位方法
Crowdsourcing-based Indoor Localization via Embedded Manifold Matching
计算机科学, 2017, 44(8): 64-70. https://doi.org/10.11896/j.issn.1002-137X.2017.08.012
[15] 黄旭,范婧,吴茂念,顾永跟.
基于Wi-Fi指纹定位技术的智能停车场系统的设计与实现
Design and Implementation of Intelligent Parking System Based on Wi-Fi Fingerprint Location Technology
计算机科学, 2016, 43(Z6): 512-515. https://doi.org/10.11896/j.issn.1002-137X.2016.6A.121
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!