基于粒子群优化算法的无线传感网络安全分簇策略

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 452-455.doi: 10.11896/jsjkx.210900131

• 网络& 通信 • 上一篇    下一篇

基于粒子群优化算法的无线传感网络安全分簇策略

蒋建峰1,2, 孙金霞1, 尤澜涛3   

  1. 1 苏州工业园区服务外包职业学院 江苏 苏州215123
    2 南京邮电大学计算机学院 南京210000
    3 苏州大学计算机科学与技术学院 江苏 苏州215123
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 蒋建峰(jiangjf@siso.edu.cn)
  • 基金资助:
    国家自然科学基金(61702351);江苏省博士后研究基金(2018K009B);江苏省专业带头人高端研修项目成果之一(2020GRFX074);江苏省青蓝工程项目成果(202010)

Security Clustering Strategy Based on Particle Swarm Optimization Algorithm in Wireless Sensor Network

JIANG Jian-feng1,2, SUN Jin-xia2, YOU Lan-tao3   

  1. 1 Suzhou Industrial Park Institute of Services Outsourcing,Suzhou,Jiangsu 215123,China
    2 School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210000,China
    3 School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215123,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:JIANG Jian-feng,born in 1983,master,associate professor.His main research interests include network technology,Internet of things,virtualization and cloud computing technology.
  • Supported by:
    National Natural Science Foundation of China(61702351),Postdoctoral Research Fund of Jiangsu Province(2018K009B),High-end Training for Professional Leaders in Jiangsu Province(2020GRFX074) and Qinglan Engineering Project in Jiangsu Province(202010).

摘要: 为解决无线传感网络存在的网络生存时间短及缺乏有效的安全传输机制问题,提出了一种基于粒子群优化算法的无线传感网络安全分簇策略。该策略结合多项式混合密钥分配技术加密簇内和簇间节点的通信数据,保证了数据传输的安全性能;另一方面,通过优化的粒子群算法构造基于节点剩余能量和通信距离的适值函数来选择最优簇首和分簇数量,通过比较粒子聚合度值迭代计算求解,解决加密算法导致的微弱能量损耗问题,保证传感器网络性能的同时实现数据通信安全。网络仿真测试表明,该策略在确保传感网络安全的同时,能够将网络吞吐量提高120%,将传感网络生命周期延长30%~65%,更好地实现了传感网络性能的优化。

关键词: 多项式密钥, 粒子群, 网络安全, 无线传感网

Abstract: In order to solve the problem of short network survival time and lack of effective secure transmission mechanism in wireless sensor networks,a secure clustering strategy for wireless sensor networks based on particle swarm optimization algorithm(SC_PSO) is proposed.This strategy combines the polynomial hybrid key distribution technology to encrypt the communication data of nodes between clusters,which ensures the security performance of data transmission.On the other hand,an optimized particle swarm algorithm is used to construct a fitness function based on the remaining energy of the node and the communication distance to select the optimal cluster head and the number of clusters.It can solve the problem of energy loss caused by the encryption algorithm,and it can ensure the performance of the sensor network while realizing data security communication.The network simulation test shows that this strategy can increase the network throughput by 120% and extend the life cycle of the sensor network by 30%~65% while ensuring the security of the sensor network.

Key words: Network Security, Polynomial Key, PSO, Wireless Sensor Network

中图分类号: 

  • TP393
[1]LIU F,WANG D D,YU B.Instant messaging system based on 3DES-RC4 hybrid encryption[J].Computer System Application,2020,29(8):80-89.
[2]MAO K J,SUN J S,YAN S H.Research on a WSNs Hierarchical Routing Protocol with Balanced Energy Consumption[J].Transducer and Microsystems Technologies,2020,39 (1):24-27,31.
[3]YANG J,LIU X L,XU Q.A new clustering routing protocol for heterogeneous wireless sensor networks[J].Transducer and Microsystems Technologies,2020,39(4):121-124,128.
[4]CUI Y N,WEI W,HU Y H.Improved LEACH routing based on particle swarm optimization algorithm in WSN[J].Journal of China Academy of Electronics,2019,14(11):1169-1173,1193.
[5]WANG X P,WU L B,MIAO F Y.Research on Multi-polynomial Key Distribution Scheme for Wireless Sensor Network[J].Journal of Chinese Computer Systems,2018,39(2):193-196.
[6]WEI Q F,YUAN Y Y,HU X D.WSN security model based on the hierarchical security role of backbone nodes[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science),2019,31(5):142-148.
[7]YUAN Y Y.Research on hierarchical security model of wireless
sensor network based on backbone trusted nodes[D].Chongqing:Chongqing University of Posts and Telecommunications,2018.
[8]JI A G,ZHAO J X.The improvement and simulation forLEACH clustering routing protocol[C]//Seventh International Conference on Electronics & Information Engineering.2017.
[9]QI H,LV L,CHEN H.LEACH optimization algorithm based on power control and number of clusters[J].Transducer and Microsystems Technologies,2018,37(10):137-139,146.
[10]FENG J,KONG J S,WANG G.A clustering single-hop routing protocol for wireless sensor networks based on energy replenishment[J].Computer Science,2020,47(S1):278-282.
[11]TAO Z Y,WANG H Z.Non-uniform hierarchical routing protocol for wireless sensor networks based on new clustering[J].Computer Science,2018,45(3):115-123.
[12]XIONG C B,DING H W,DONG Z F.A low-latency and low-power WSN clustering algorithm based on LEACH[J].ComputerScience,2020,47(1):258-264.
[13]SONG W W.Load balancing mechanism of data center based on particle swarm optimization[J].Nanjing University of Posts and Telecommunications(Natural Science),2019,39(5):81-88.
[14]YI M.A secure clustering algorithm for wireless sensor networks based on hybrid PSO[J].Journal of PLA University of Science and Technology (Natural Science Edition),2015(16):433-438.
[15]MA S Q,TANG H,LI Y.Data center network traffic scheduling strategy based on particle swarm optimization algorithm[J].Telecommunication Engineering,2021,61(7):865-871.
[1] 柳杰灵, 凌晓波, 张蕾, 王博, 王之梁, 李子木, 张辉, 杨家海, 吴程楠.
基于战术关联的网络安全风险评估框架
Network Security Risk Assessment Framework Based on Tactical Correlation
计算机科学, 2022, 49(9): 306-311. https://doi.org/10.11896/jsjkx.210600171
[2] 王磊, 李晓宇.
基于随机洋葱路由的LBS移动隐私保护方案
LBS Mobile Privacy Protection Scheme Based on Random Onion Routing
计算机科学, 2022, 49(9): 347-354. https://doi.org/10.11896/jsjkx.210800077
[3] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
[4] 陶礼靖, 邱菡, 朱俊虎, 李航天.
面向网络安全训练评估的受训者行为描述模型
Model for the Description of Trainee Behavior for Cyber Security Exercises Assessment
计算机科学, 2022, 49(6A): 480-484. https://doi.org/10.11896/jsjkx.210800048
[5] 邓凯, 杨频, 李益洲, 杨星, 曾凡瑞, 张振毓.
一种可快速迁移的领域知识图谱构建方法
Fast and Transmissible Domain Knowledge Graph Construction Method
计算机科学, 2022, 49(6A): 100-108. https://doi.org/10.11896/jsjkx.210900018
[6] 吕鹏鹏, 王少影, 周文芳, 连阳阳, 高丽芳.
基于进化神经网络的电力信息网安全态势量化方法
Quantitative Method of Power Information Network Security Situation Based on Evolutionary Neural Network
计算机科学, 2022, 49(6A): 588-593. https://doi.org/10.11896/jsjkx.210200151
[7] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[8] 杜鸿毅, 杨华, 刘艳红, 杨鸿鹏.
基于网络媒体的非线性动力学信息传播模型
Nonlinear Dynamics Information Dissemination Model Based on Network Media
计算机科学, 2022, 49(6A): 280-284. https://doi.org/10.11896/jsjkx.210500043
[9] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[10] 邱旭, 卞浩卜, 吴铭骁, 朱晓荣.
基于5G毫米波通信的高速公路车联网任务卸载算法研究
Study on Task Offloading Algorithm for Internet of Vehicles on Highway Based on 5G MillimeterWave Communication
计算机科学, 2022, 49(6): 25-31. https://doi.org/10.11896/jsjkx.211100198
[11] 徐汝利, 黄樟灿, 谢秦秦, 李华峰, 湛航.
基于金字塔演化策略的彩色图像多阈值分割
Multi-threshold Segmentation for Color Image Based on Pyramid Evolution Strategy
计算机科学, 2022, 49(6): 231-237. https://doi.org/10.11896/jsjkx.210300096
[12] 李晓东, 於志勇, 黄昉菀, 朱伟平, 涂淳钰, 郑伟楠.
面向河道环境监测的群智感知参与者选择策略
Participant Selection Strategies Based on Crowd Sensing for River Environmental Monitoring
计算机科学, 2022, 49(5): 371-379. https://doi.org/10.11896/jsjkx.210200005
[13] 张师鹏, 李永忠.
基于降噪自编码器和三支决策的入侵检测方法
Intrusion Detection Method Based on Denoising Autoencoder and Three-way Decisions
计算机科学, 2021, 48(9): 345-351. https://doi.org/10.11896/jsjkx.200500059
[14] 屈立成, 吕娇, 屈艺华, 王海飞.
基于模糊神经网络的运动目标智能分配定位算法
Intelligent Assignment and Positioning Algorithm of Moving Target Based on Fuzzy Neural Network
计算机科学, 2021, 48(8): 246-252. https://doi.org/10.11896/jsjkx.200600050
[15] 周仕承, 刘京菊, 钟晓峰, 卢灿举.
基于深度强化学习的智能化渗透测试路径发现
Intelligent Penetration Testing Path Discovery Based on Deep Reinforcement Learning
计算机科学, 2021, 48(7): 40-46. https://doi.org/10.11896/jsjkx.210400057
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!