计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 278-282.doi: 10.11896/jsjkx.210300111
李华基, 程江华, 刘通, 程榜, 赵康成
LI Hua-ji, CHENG Jiang-hua, LIU Tong, CHENG Bang, ZHAO Kang-cheng
摘要: 弱光图像增强是计算机视觉中最具挑战性的任务之一,现有算法存在亮度不均、对比度低、颜色失真和噪声严重等问题。文中提出了一种基于改进U-net++网络实现更为自然的暗光增强网络框架。首先,输入弱光图像至改进U-net++网络,利用各层密集连接以增强不同层次图像特征的关联性;其次,把各层次图像特征融合后输入卷积网络层进行细节重建。实验结果证明,该方法在提高图像亮度的同时,更好地恢复了弱光图像的细节特征,并且生成正常光图像的颜色特征更接近自然。在PASCAL VOC测试集上的测试结果显示结构相似度(SSIM)和峰值信噪比(PSNR)两个重要指标分别为0.87和26.36,比同类最优算法分别高出18.6%和11.4%。
中图分类号:
[1]ARICI T,DIKBAS S,ALTUNBASAK Y.A histogram modification frame-work and its application for image contrast enhancement [J].IEEE Transactions on Image Processing,2009,18(9):1921-1935. [2]NAKAI K,HOSHI Y,TAGUCHI A.Color image contrast enhacement method based on differential intensity/saturation gray-levels histograms[C]//IEEE International Symposiumon Intelligent Signal Processing and Communications Systems (ISPACS).2013:445-449. [3]WANG S H,ZHENG J,HU H M,et al.Naturalness preserved enhancement algorithm for nonuniform illumination images [J].IEEE Transactions on Image Processing,2013,22(9):3538-3548. [4]FU X Y,ZENG D L,HUANG Y,et al.A weighted variational model for simultaneous reflectance and illumination estimation[C]//IEEE Conference on Computer Vision and Pattern Recognition.2016:2782-2790. [5]LORE K G,AKINTAYO A,SARKAR S.Llnet:A deep autoencoder approach to natural low-light image enhancement [J].Pattern Recognition,2017,61:650-662. [6]TAO L,ZHU C,XIANG G Q,et al.Llcnn:A convolutional neural network for low-light image enhancement[C]//IEEE Visual Communications and Image Processing (VCIP).2017:1-4. [7]SHEN L,YUE Z,FENG F,et al.MSR-net:Low-light ImageEnhancement Using Deep Convolutional Network[EB/OL].[2017-11-07].https://arxiv.org/abs/1711.02488. [8]WEI C,WANG W,YANG W,et al.Deep Retinex Decomposition for Low-Light Enhancement[C]//British Machine Vision Conference.2018. [9]DABOV K,FOI A,KATKOVNIK V,et al.Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering [J].IEEE Transactions on Image Processing,2007,16(8):2080-2095. [10]WANG W,CHEN W,YANG W,et al.GLADNet:Low-LightEnhancement Network with Global Awareness[C]//IEEE International Conference on Automatic Face & Gesture Recognition.2018:751-755. [11]CHEN C,CHEN Q,XU J,et al.Learning to See in the Dark[C]//IEEE Conference on Computer Vision and Pattern Recognition.2018:3291-3300. [12]ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.UNet++:a nested U-Net architecture for medical image segmentation[EB/OL].[2019-10-16].https://arxiv.org/pdf/1807.10165v1.pdf. [13]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity [J].IEEE Transactions on Image Processing,2004,13(4):600-612. [14]HE K,ZHANG X,REN S,et al.Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016:770-778. [15]LV F,LU F,WU J,et al.MBLLEN:Low-Light Image/Video Enhancement Using CNNs[C]//BMVC.2018:220. [16]HAMID R S,ALAN C B.Image information and visual quality [J].IEEE Transactions on Image Processing,2006,15(2):430-444. [17]WANG S,ZHENG J,HU H,et al.Naturalness preserved en-hancement algorithm for non-uniform illumination images [J].IEEE Transactions on Image Processing,2013,22(9):3538-3548. [18]MITTAL A,SOUNDARARAJAN R,BOVIK A.Making acompletely blind image quality analyzer[J].IEEE Signal Processing Letters,2013,20(3):209-212. [19]YING Z Q,LI G,REN Y R,et al.A new image contrast enhancement algorithm using exposure fusion framework[C]//International Conference on Computer Analysis of Images and Patterns.Springer,2017:36-46. [20]GUO X J,LI Y,LING H B.Lime:Low-light image enhancement via illumination map estimation [J].IEEE Transactions on Image Processing,2017,26(2):982-993. [21]FU X Y,ZENG D L,HUANG Y,et al.A fusion-based enhancing method for weakly illuminated images[J].Signal Processing,2016,129:82-96. [22]ZHANG Y H,ZHANG J W,GUO X J.Kindling the Darkness:A Practical Low-light Image Enhancer[C]//27th ACM International Conference on Multimedia.2019:1632-1640. [23]GUO C,LI C,GUO J,et al.Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2020:1777-1786. |
[1] | 王丽芳, 王蕊芳, 蔺素珍, 秦品乐, 高媛, 张晋. 基于双残差超密集网络的多模态医学图像融合 Multimodal Medical Image Fusion Based on Dual Residual Hyper Densely Networks 计算机科学, 2021, 48(2): 160-166. https://doi.org/10.11896/jsjkx.200400095 |
[2] | 钱小梅,刘嘉勇,程芃森. 基于密集连接卷积神经网络的远程监督关系抽取 Distant Supervised Relation Extraction Based on Densely Connected Convolutional Networks 计算机科学, 2020, 47(2): 157-162. https://doi.org/10.11896/jsjkx.190100167 |
[3] | 郑诚, 薛满意, 洪彤彤, 宋飞豹. 用于短文本分类的DC-BiGRU_CNN模型 DC-BiGRU_CNN Model for Short-text Classification 计算机科学, 2019, 46(11): 186-192. https://doi.org/10.11896/jsjkx.180901702 |
|