计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 638-643.doi: 10.11896/jsjkx.210300080
张天瑞1,2, 魏铭琦1, 高秀秀1
ZHANG Tian-rui1,2, WEI Ming-qi1, GAO Xiu-xiu1
摘要: 针对选择性激光烧结(Selective Laser Sintering,SLS)件成型过程中因气泡导致的质量缺陷问题,提出一种基于改进粒子群(Improved Particle Swarm Optimization,IPSO)算法优化的加权随机森林(Weighted Random Forest,WRF)预测方法,用于实现气泡溶解时间的有效预测。该方法利用IPSO算法优化WRF分裂属性个数和决策树数量两个关键参数,构建IPSO-WRF预测模型。数值实例表明,与PSO-RF,PSO-KELM预测模型的预测结果相比,基于相同的训练样本和测试样本,气泡溶解时间IPSO-WRF的预测模型能够获得误差更小且更接近于实际值的输出结果。MAE,MAPE,RMSE指标表明,IPSO-WRF预测模型具有比PSO-RF模型和PSO-KELM模型更高的非线性拟合能力和预测精度。最后,通过敏感性分析确定对气泡溶解时间影响最显著的输入参数,为SLS技术的发展提供理论依据。
中图分类号:
[1]NELSON J C.Selective laser sintering:A Definition of theProcess and an Empirical Sintering Moder[D].Austin:University of Texas at Austin:1993. [2]WEI Q,ZHONG J,XU Z,et al.Microstructure Evolution and Mechanical Properties of Ceramic Shell Moulds for Investment Casting of Turbine Blades by Selective Sintering[J].Ceram Int,2018,44(1):12088-12097. [3]SHI Y S,HUANG S H,PAN C Y.Research on Intelligent Optimization Method of Selective Laser Sintering Process Parameters[J].Mechanical Science and Technology,2003,22(2):259-263. [4]BOURELL D L,WATT T J,LEIGH D K,et al.PerformanceLimitations in Polymer Laser Sintering[J].Physicals Proceeds,2014,56(3):147-156. [5]KONTOPOULOU M,VLACHOPOULOS J.Bubble Dissolution in Molten Polymers and Its Role in Rotational Molding[J].Polym Engineering,1999,39(6):1189-1198. [6]LIU Z P,WANG H S,XIE H P.Precision prediction of selectivelaser sintering of coated sand based on BP neural network[J].Hot Working Technology,2016,45(21):91-93. [7]REN J W,YIN J J,DONG L J.Precision prediction of selective laser sintering of coated sand based on BP neural network[J].Mechine Tool&Hydraulics,2016,45(21):15-18. [8]CAI C Z,PEI J F,WEN Y F.Support vector regression prediction of selective laser sintering molding density[J].Acta Physica Sinica,2009,58(special issue):8-14. [9]BREIMAN L.Random Forests[J].Machine Learning,2001,45(1):5-32. [10]WEN B E,DONG W H,XIE W J.Parameter optimization of random forest based on improved grid search algorithm[J].Computer Engineering and Applications,2018,54(10):154-157. [11]LAI C G,CHEN X H,ZHAO S W.Flood risk assessment model based on random forest and its application[J].Journal of Hydraulic Engineering,2015,46(1):58-53 [12]LU W X,WU H C,WAN L Y.Prediction of Precipitation by PLS Based on Fusion of Random Forest Algorithm[J].Statistics & Decision,2020,18(3):27-31. [13]JI Y J,YONG X Y,LIU Y L.Quality analysis and prediction method of hot rolled strip steel based on random forest[J].Journal of Northeast University,2019,40(1):11-15. [14]ZHAO T,WANG L T,ZHANG Y.Recognition of user power consumption related factors and power consumption prediction method using mutual information and random forest algorithm[J].Proceedings of the CSEE,2016,36(3):604-614. [15]HE J,WEN X T,NIE W X.Using Random Forest Algorithm to Predict Crack Development Zone[J].Oil Geophysical Prospecting,2020,55(1):161-166. [16]WEN T X,ZHANG B,SHAO L S.Random forest model of coal and gas outburst prediction[J].Computer Engineering and Applications,2014,50(10):233-237. [17]CHEN Y P,LUO M,PENG J H.Land use classification of industrial and mining reclamation areas based on network search random forest algorithm[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(14):250-257. [18]YANG X Y,GUAN W Y,LIU Y Q.Wind power interval prediction method based on particle swarm optimization kernel extreme learning machine model[J].Proceedings of CSEE,2015,35(supplement):146-153. [19]LI W T,BIAN S F,REN Q Y.Beidou ultra-fast clock error prediction based on particle swarm optimization kernel extreme learning machin[J].Journal of Astronautics,2019,40(9):1080-1088. [20]KANG S A,YU J C,ZHANG J.Direct Route Drag Prediction of Chain-structured Underwater Vehicle Based on Neural Network Optimized by Particle Swarm Optimization[J].Journal of Mechanical Engineering.2019,55(21):32-38. [21]WANG X X,BIAN S F,REN Q Y.Motor Fault DiagnosisMethod Based on Particle Swarm Optimization and Random Forest[J].Small & Special Electrical Machines,2019,47(10):42-45. [22]KISI O,KHOSRAVINIA P,HEDDAM S,et al.Modeling wetting front redistribution of drip irrigation systems using a new machine learning method:Adaptive neuro- fuzzy system improved by hybrid particle swarm optimization-Gravity search algorithm[J].Agricultural Water Management.2021,256(12):107067-107083. |
[1] | 张旭, 王莉莉, 杨博韬. 带有一刀切约束的二维非规则装箱算法 Heuristic Algorithms for Two-dimensional Irregular Bin Packing Problem with GuillotineConstraints 计算机科学, 2020, 47(5): 212-216. https://doi.org/10.11896/jsjkx.190400078 |
|