计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 303-307.doi: 10.11896/jsjkx.210200103
巫勇1,2, 刘永坚1, 唐瑭2, 王洪林2, 郑建成2
WU Yong1,2, LIU Yong-jian1, TANG Tang2, WANG Hong-lin2, ZHENG Jian-cheng2
摘要: 去噪是高光谱图像进一步分析的重要预处理步骤,许多去噪方法都被用于高光谱图像数据立方体的去噪。然而,传统的去噪方法对异常值和非高斯噪声很敏感。文中利用底层干净HSI的张量性质数据、异常值的稀疏性质和非高斯噪声,提出一个新的基于鲁棒低秩张量修复的模型,从而在保护HSI的同时删除离散值的全局结构和不同类型的噪声(高斯噪声、脉冲噪声、死线等)。该模型可以用非精确增广拉格朗日法求解,仿真和真实高光谱图像实验的结果表明,该方法对HSI去噪是有效的。
中图分类号:
[1]ZHAO Y Q,YANG J X.Hyperspectral Image Denoising viaSparse Representation and Low-Rank Constraint[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(1):296-308. [2]WANG Z P,TYO J S,HAYAT M M.Generalized Signal-to-Noise Ratio for Spectral Sensors with Correlated Bands[J].Journal of The Optical Society of America A,2008,25(10):2528-2534. [3]ZHANG L F,ZHANG L P,TAO D C,et al.Compression of Hyperspectral Remote Sensing Images by Tensor Approach[J].Neurocomputing,2015,147:358-363. [4]ZHANG H Y,HE W,ZHANGL P,et al.Hyperspectral Image Restoration Using Low-Rank Matrix Recovery[J].IEEE transactions on geoscience and remote sensing,2013,52(8):4729-4743. [5]GUO X,HUANG X,ZHANG L P,et al.Hyperspectral Image Noise Reduction Based on Rank-1 Tensor Decomposition[J].ISPRS Journal of Photogrammetry and Remote Sensing,2013,83:50-63. [6]MA J Y,ZHAO J,TIANJ W,et al.Robust Point Matching via Vector Field Consensus[J].IEEE Transactions on Image Processing.2014,23(4):1706-1721. [7]YUAN Q Q,ZHANG L P,SHEN H F.Hyperspectral Image Denoising with A Spatial-Spectral View Fusion Strategy[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(5):2314-2325. [8]LIN T,BOURENNANE S.Survey of Hyperspectral Image Denoising Methods Based on Tensor Decompositions[J].EURASIP journal on Advances in Signal Processing,2013,186(1):1-11. [9]MUTI D,BOURENNANE S,MAROT J.Lower-Rank Tensor Approximation and Multiway Filtering[J].SIAM Journal on Matrix Analysis and Applications,2008,30(3):1172-1204. [10]RENARD N,BOURENNANE S,BLANC-TALON J.Denoising and Dimensionality Reduction Using Multilinear Tools for Hyperspectral Images[J].IEEE Geoscience and Remote Sensing Letters,2008,5(2):138-142. [11]LIU X F,BOURENNANE S,FOSSATI C.Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3717-3724. [12]LIN T,BOURENNANE S.Hyperspectral Image Processing by Jointly Filtering Wavelet Component Tensor[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(6):3529-3541. [13]LI Q,LI H Q,LU Z B,et al.Denoising of Hyperspectral Images Employing Two-Phase Matrix Decomposition[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(9):3742-3754. [14]GOLDFARB D,QIN Z W.Robust Low-Rank Tensor Recovery:Models and Algorithms[J].SIAM Journal on Matrix Analysis and Applications,2014,35(1):225-253. [15]WRIGHT J,GANESH A,RAO S,et al.Robust Principal Component Analysis:Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization[R].Coordinated Science Laboratory Report no.UILU-ENG-09-2210,DC-243,2009. [16]GANDY S,RECHT B,YAMADA I.Tensor Completion andLow-n-Rank Tensor Recovery via Convex Optimization[J].Inverse Problems,2011,27(2):1-19. [17]LIU G,LIN Z,YAN S,et al.Robust Recovery of SubspaceStructures by Low-Rank Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):171-184. [18]LIN Z C,CHEN M M,WU L,et al.The Augmented Lagrange Multiplier Method for Exact recovery of Corrupted Low-Rank Matrices[R].UIUC Tech.Rep.UILU-ENG-09-2215 (University Illinois at Urbana Champaign,Champaign,Illinois,2009). [19]ZHANG Y.Recent advances in alternating direction methods:practice and theory[R].Presented at IPAM Workshop:Numerical Methods for Continuous Optimization.Los Angeles,California,2010. [20]ZHANG L,ZHANG L,MOU X Q,et al.FSIM:A Feature Similarity Index for Image Quality Assessment[J].IEEE Transactions on Image Processing,2011,20(8):2378-2386. [21]DABOV K,FOI A,EGIAZARIAN K.Video Denoising bySparse 3D Transform-Domain Collaborative Filtering[C]//Proceedings of 15th European Signal Processing Conference.Pozna'n,Poland,2007. |
[1] | 郑建炜, 黄娟娟, 秦梦洁, 徐宏辉, 刘志. 基于非局部相似及加权截断核范数的高光谱图像去噪 Hyperspectral Image Denoising Based on Non-local Similarity and Weighted-truncated NuclearNorm 计算机科学, 2021, 48(9): 160-167. https://doi.org/10.11896/jsjkx.200600135 |
[2] | 林云, 黄桢航, 高凡. 扩散式变阶数最大相关熵准则算法 Diffusion Variable Tap-length Maximum Correntropy Criterion Algorithm 计算机科学, 2021, 48(5): 263-269. https://doi.org/10.11896/jsjkx.200300043 |
[3] | 郭远华,周贤林. 基于灰度密度和四方向的随机脉冲噪声检测 Random-valued Impulse Noise Detection Based on Pixel-valued Density and Four Directions 计算机科学, 2016, 43(Z11): 220-222. https://doi.org/10.11896/j.issn.1002-137X.2016.11A.050 |
[4] | 罗海驰,李岳阳,孙俊. 一种基于自适应神经模糊推理系统的图像滤波方法 Filtering Method for Images Based on Adaptive Neuro-fuzzy Inference System 计算机科学, 2013, 40(7): 302-306. |
|