基于改进Marching Tetrahedra算法的锥体气象数据三维重建

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 644-647.doi: 10.11896/jsjkx.210200025

• 交叉& 应用 • 上一篇    下一篇

基于改进Marching Tetrahedra算法的锥体气象数据三维重建

马俊成, 蒋慕蓉, 房素芹   

  1. 云南大学信息学院 昆明650500
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 蒋慕蓉(jiangmr@ynu.edu.cn)
  • 作者简介:ma.jc@foxmail.com

Three-dimensional Reconstruction of Cone Meteorological Data Based on Improved MarchingTetrahedra Algorithm

MA Jun-cheng, JIANG Mu-rong, FANG Su-qin   

  1. School of Information Science and Engineering,Yunnan University,Kunming 650500,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:MA Jun-cheng,born in 1995,postgraduate.His main research interests include 3D visualization and so on.
    JIANG Mu-rong,born in 1963,professor.Her main research interests include mathematical method of image processing and its intelligent calculation

摘要: 在气象领域中,多普勒雷达探测的气象数据采用空间极坐标的方式进行存储,探测到的气象目标具有分布不均匀、区域分散、形状不规则等特征。为了满足气象目标三维重建的需求,针对雷达数据特征对Marching Tetrahedra三维重建算法进行一定的改进。首先采用Barnes插值方法和傅里叶谱分析原理的插值方法分别在雷达锥体数据的垂直方向及径向之间进行回波强度值的加密,对加密后的回波极坐标数据构成的新的六面体进行基本四面体单元的剖分,并利用线性插值得到各顶点的具体位置,绘制时结合多层次面绘制技术渲染三维图,该算法避免了对高仰角以及距离远而没有回波数据区域的重建。实验表明,改进算法能更好更快地实现三维重建,并且能观测分析云层的内部细节信息,为气象的准确预报提供了一定的参考依据。

关键词: Marching Tetrahedra算法, 多层次三维重建, 雷达数据插值, 气象雷达

Abstract: In the field of meteorology,the meteorological data detected by Doppler radar is stored in the form of spatial polar coordinates,and the detected meteorological targets have the characteristics of uneven distribution,scattered regions,and irregular shapes.In order to meet the needs of 3D reconstruction of meteorological targets,the Marching Tetrahedra 3D reconstruction algorithm is improved according to the characteristics of radar data.First,the Barnes interpolation method and the interpolation method of the Fourier spectrum analysis principle are used in the vertical direction and radius of the radar cone data.This algorithm encrypts the echo intensity value between the two directions,divides the new hexahedron formed by the encrypted echo polar coordinate data into basic tetrahedral units,and uses linear interpolation to obtain the specific position of each vertex,and combines the multi-level surface when drawing.The rendering technology renders 3D images.The algorithm avoids the reconstruction of areas with high elevation angles and long distances without echo data.Experiments show that the improved algorithm can not only achieve better and faster three-dimensional reconstruction,but also observe and analyze the internal details of the cloud layer,which provides a certain reference basis for accurate weather forecasting.

Key words: Marching Tetrahedra algorithm, Multi-level 3D reconstruction, Radar data interpolation, Weather radar

中图分类号: 

  • TP391
[1]DOBASHI Y,YAMAMOTO T,NISHITA T.An interactiverendering system using hierarchical data structure for earth-scale clouds[J].Science China (Information Sciences),2010,53(5):920-931.
[2]LAMPERTI E,DENHAM M,ARETA J.Weather radar dataprocessing on graphic cards[J].Journal of Supercomputing,2018,74(2):868-885.
[3]LIU Z N,SHI Z Z,JIANG M R,et al.Using MC Algorithm to Implement 3D Image Reconstruction for Yunnan Weather Radar Data[J].Journal of Computer and Communications,2017,5(5):50-61.
[4]XIE Y H,ZHU C F,ZHENG Y,et al.Three-Dimensional Visualization of Weather Forecast Cloud Data Based on Adaptive Grid Structure[J].Computer Simulation,2019,36(7):203-207.
[5]LU Y.Research on 3D Visualization Method of Weather Radar Base Data[D].Nanjing:Nanjing University of Information Science and Technology,2016.
[6]JIAO P C,WANG Z H,CHU Z G,et al.Weather radar image interpolation method based on Fourier spectrum analysis[J].Plateau Weather,2016,35(6):1683-1693.
[7]ZHOU J.3D-surface Reconstruction Algorithm for Medical Images Based on MITK[J].Computer Science,2016,43(S1):194-197.
[8]WANG M,FENG J Q,YANG B.Comparison and Evaluation of Marching Cubes and Marching Tetrahedra[J].Journal of Computer-Aided Design & Computer Graphics,2014,26(12):2099-2106.
[9]LI C.Geological data rendering based on MT algorithm[J].Digi-tal Communication,2014,41(4):35-38.
[10]PENG J.Research on Doppler WeatherRadar echo Data Visualization Technology[D].Hangzhou:Zhejiang University of Technology,2019.
[1] 陈志强, 韩萌, 李慕航, 武红鑫, 张喜龙.
数据流概念漂移处理方法研究综述
Survey of Concept Drift Handling Methods in Data Streams
计算机科学, 2022, 49(9): 14-32. https://doi.org/10.11896/jsjkx.210700112
[2] 王明, 武文芳, 王大玲, 冯时, 张一飞.
生成链接树:一种高数据真实性的反事实解释生成方法
Generative Link Tree:A Counterfactual Explanation Generation Approach with High Data Fidelity
计算机科学, 2022, 49(9): 33-40. https://doi.org/10.11896/jsjkx.220300158
[3] 张佳, 董守斌.
基于评论方面级用户偏好迁移的跨领域推荐算法
Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer
计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131
[4] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[5] 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲.
基于无监督集群级的科技论文异质图节点表示学习方法
Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level
计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196
[6] 柴慧敏, 张勇, 方敏.
基于特征相似度聚类的空中目标分群方法
Aerial Target Grouping Method Based on Feature Similarity Clustering
计算机科学, 2022, 49(9): 70-75. https://doi.org/10.11896/jsjkx.210800203
[7] 郑文萍, 刘美麟, 杨贵.
一种基于节点稳定性和邻域相似性的社区发现算法
Community Detection Algorithm Based on Node Stability and Neighbor Similarity
计算机科学, 2022, 49(9): 83-91. https://doi.org/10.11896/jsjkx.220400146
[8] 吕晓锋, 赵书良, 高恒达, 武永亮, 张宝奇.
基于异质信息网的短文本特征扩充方法
Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network
计算机科学, 2022, 49(9): 92-100. https://doi.org/10.11896/jsjkx.210700241
[9] 徐天慧, 郭强, 张彩明.
基于全变分比分隔距离的时序数据异常检测
Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance
计算机科学, 2022, 49(9): 101-110. https://doi.org/10.11896/jsjkx.210600174
[10] 聂秀山, 潘嘉男, 谭智方, 刘新放, 郭杰, 尹义龙.
基于自然语言的视频片段定位综述
Overview of Natural Language Video Localization
计算机科学, 2022, 49(9): 111-122. https://doi.org/10.11896/jsjkx.220500130
[11] 曹晓雯, 梁美玉, 鲁康康.
基于细粒度语义推理的跨媒体双路对抗哈希学习模型
Fine-grained Semantic Reasoning Based Cross-media Dual-way Adversarial Hashing Learning Model
计算机科学, 2022, 49(9): 123-131. https://doi.org/10.11896/jsjkx.220600011
[12] 周旭, 钱胜胜, 李章明, 方全, 徐常胜.
基于对偶变分多模态注意力网络的不完备社会事件分类方法
Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification
计算机科学, 2022, 49(9): 132-138. https://doi.org/10.11896/jsjkx.220600022
[13] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[14] 曲倩文, 车啸平, 曲晨鑫, 李瑾如.
基于信息感知的虚拟现实用户临场感研究
Study on Information Perception Based User Presence in Virtual Reality
计算机科学, 2022, 49(9): 146-154. https://doi.org/10.11896/jsjkx.220500200
[15] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!