基于质心法的车联网目标跟踪方法与应用

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 340-344.doi: 10.11896/jsjkx.210200004

• 图像处理& 多媒体技术 • 上一篇    下一篇

基于质心法的车联网目标跟踪方法与应用

叶阳, 卢奇, 程时伟   

  1. 浙江工业大学计算机科学与技术学院 杭州310023
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 叶阳(yeyang80@zjut.edu.cn)
  • 基金资助:
    国家重点研发计划课题(2016YFB1001403)

Centroid Method Based Target Tracking and Application for Internet of Vehicles

YE Yang, LU Qi, CHENG Shi-wei   

  1. School of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:YE Yang,born in 1980,postgraduate,lab master,is a member of China Computer Federation.His main research interests include virtual reality,digital image processing and human-computer interaction.
  • Supported by:
    National Key Research & Development Program of China(2016YFB1001403).

摘要: 车辆目标跟踪是实现车联网不可或缺的一环,旨在获取车辆的动态信息,以提高交通运行效率。其核心是对大量监控探头采集的视频图像进行分析处理,实现车辆的实时检测与跟踪。为了进一步提高目标检测效率,降低硬件成本,文中提出了基于二帧差分法的前景检测方法,以及基于质心法的车辆轮廓检测与跟踪方法。基于OpenCV3.4.1和VS2017进行验证实验和仿真测试,结果表明,该算法对车辆跟踪的精确率达到89.1%,平均处理耗时42.63 ms,具有较好的实时性和鲁棒性,可在车联网嵌入式设备上进行部署和应用。

关键词: OpenCV, 目标跟踪, 质心法

Abstract: Vehicle target tracking is an indispensable part of the realization of the Internet of Vehicles,which aims to obtain vehicle dynamic information to improve the efficiency of traffic operation.Its core is to analyze and process the video images collected by a large number of monitoring probes to realize real-time detection and tracking of vehicles.In order to further improve the efficiency of target detection and reduce hardware costs,this paper proposes a foreground detection method based on the two-frame difference method,and a vehicle contour detection and tracking method based on the centroid method.Based on OpenCV3.4.1 and VS2017,the algorithm verification and simulation test are carried out.The results show that the accuracy of the algorithm for vehicle tracking reaches 92.3%,and the average processing time is 42.63 ms.It can be deployed and applied on embedded devices in the Internet of Vehicles.

Key words: Centroid method, OpenCV, Target tracking

中图分类号: 

  • TP311
[1]SONG H S,LI Y,YANG J,et al.Vehicle target tracking based on highway scenes[J].Computer System Applications,2019,28(6):82-88.
[2]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587.
[3]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788.
[4]SHI W S,SUN H,CAO J,et al.Edge computing:a new computing model for the Internet era[J].Journal of Computer Research and Development,2017,54(5):907-924.
[5]HUANGK Q,CHEN X T,KANG Y F,et al.Overview of intelligent video surveillance technology[J].Journal of Computer Science,2015,38(6):1093-1118.
[6]XU L P,GENG B,LI X L,et al.Design of target tracking algorithm based on Harris corner combined with pyramid optical flow method[J].Computer Measurement and Control,2018,236(5):168-171,175.
[7]WANG Y W,YU H X,YAO B,et al.Target tracking based on Canny detection algorithm[J].Electronic Design Engineering,2012(3):149-152.
[8]YAO F W,XU C M.Mean shift tracking algorithm based ontarget centroid[J].Computer Technology and Development,2012(6):110-112,116.
[9]WANG J X,LEI Z C.A Convolutional Neural Network Face Recognition Algorithm Based on Feature Fusion[J/OL].Progress in Laser and Optoelectronics:1-12.[2019-12-30].http://kns.cnki.net/kcms/detail/31.1690.TN.20191106.1156.026.html.
[10]XU Q Y,QIN G H,SUN M H,et al.Feature Fusion based Hand Gesture Recognition Method for Automotive Interfaces[J/OL].Chinese Journal of Electronics:1-12.[2021-01-22].http://kns.cnki.net/kcms/detail/10.1284.TN.20200727.1424.004.html.
[11]MA M,LI Y B,WU X Q,et al.Multi-feature fusion human pose tracking in video[J].Journal of Image and Graphics,2020,25(7):1459-1472.
[12]ZHOU Z.Design and implementation of multi-target trackingsystem based on embedded platform[D].Beijing:Beijing University of Technology,2018.
[13]TAN X Q,DONG C J.A vehicle tracking algorithm based on video image sequence[J].Modern Industrial Economics and Informatization,2016,6(1):80-81,84.
[14]CHEN C,ZHU Y,XIAO Y L,et al.An effective vehicle tracking algorithm and abnormal vehicle detection[J].Journal of East China University of Science and Technology (Natural Science Edition),2015,41(2):205-209.
[15]ZHOU M J,WANG J W.Research on the Detection and Track-ing Methods of Moving Vehicles in Video Sequences[J].Tech-
nology and Innovation,2017(4):76-78.
[16]ZHU H N,XU M M,SHEN Y.Research on Multi-Video Vehicle Tracking Based on Mean Shift[J].Computer Science,2018,45(S1):220-226.
[17]GUO X X,CUI A J,WAN H L,et al.Research on particle filter vehicle tracking algorithm based on median filter and multi-feature fusion[J].Journal of Shandong Normal University (Natural Science Edition),2017,32(3):69-75.
[18]LI T.Research on Application of video surveillance detection algorithm in traffic intersection[D].Hubei:Wuhan University of technology,2009.
[19]ZHAO J M,ZHANG L P.Research on moving vehicle detection and tracking technology in traffic video[J].Vehicle and Power Technology,2012(4):46-49.
[1] 沈祥培, 丁彦蕊.
多检测器融合的深度相关滤波视频多目标跟踪算法
Multi-detector Fusion-based Depth Correlation Filtering Video Multi-target Tracking Algorithm
计算机科学, 2022, 49(8): 184-190. https://doi.org/10.11896/jsjkx.210600004
[2] 文成宇, 房卫东, 陈伟.
多目标跟踪的对象初始化综述
Object Initialization in Multiple Object Tracking:A Review
计算机科学, 2022, 49(3): 152-162. https://doi.org/10.11896/jsjkx.210200048
[3] 赵越, 余志斌, 李永春.
基于互注意力指导的孪生跟踪算法
Cross-attention Guided Siamese Network Object Tracking Algorithm
计算机科学, 2022, 49(3): 163-169. https://doi.org/10.11896/jsjkx.210300066
[4] 陈媛, 惠燕, 胡秀华.
一种自适应尺度与学习速率调整的背景感知相关滤波跟踪算法
Background-aware Correlation Filter Tracking Algorithm with Adaptive Scaling and Learning Rate Adjustment
计算机科学, 2021, 48(5): 177-183. https://doi.org/10.11896/jsjkx.200300109
[5] 程旭, 崔一平, 宋晨, 陈北京, 郑钰辉, 史金钢.
基于时空注意力机制的目标跟踪算法
Object Tracking Algorithm Based on Temporal-Spatial Attention Mechanism
计算机科学, 2021, 48(4): 123-129. https://doi.org/10.11896/jsjkx.200800164
[6] 张开华, 樊佳庆, 刘青山.
视觉目标跟踪十年研究进展
Advances on Visual Object Tracking in Past Decade
计算机科学, 2021, 48(3): 40-49. https://doi.org/10.11896/jsjkx.201100186
[7] 刘彦, 秦品乐, 曾建朝.
基于YOLOv3与分层数据关联的多目标跟踪算法
Multi-object Tracking Algorithm Based on YOLOv3 and Hierarchical Data Association
计算机科学, 2021, 48(11A): 370-375. https://doi.org/10.11896/jsjkx.201000115
[8] 赵钦炎, 李宗民, 刘玉杰, 李华.
基于信息熵的级联Siamese网络目标跟踪
Cascaded Siamese Network Visual Tracking Based on Information Entropy
计算机科学, 2020, 47(9): 157-162. https://doi.org/10.11896/jsjkx.190800160
[9] 程中建, 周双娥, 李康.
基于多尺度自适应权重的稀疏表示目标跟踪算法
Sparse Representation Target Tracking Algorithm Based on Multi-scale Adaptive Weight
计算机科学, 2020, 47(6A): 181-186. https://doi.org/10.11896/JsJkx.190500093
[10] 喻露, 胡剑锋, 姚磊岳.
全局块与局部块协作的相关滤波目标跟踪算法
Correlation Filter Object Tracking Algorithm Based on Global and Local Block Cooperation
计算机科学, 2020, 47(6): 157-163. https://doi.org/10.11896/jsjkx.190500078
[11] 谭建豪, 殷旺, 刘力铭, 王耀南.
采用多相关滤波策略的鲁棒长时自适应目标跟踪
Robust Long-term Adaptive Object Tracking Based onMulti-correlation Filtering Strategy
计算机科学, 2020, 47(12): 169-176. https://doi.org/10.11896/jsjkx.191000021
[12] 马康, 娄静涛, 苏致远, 李永乐, 朱愿.
结合特征融合和尺度自适应的核相关滤波器目标跟踪算法研究
Object Tracking Algorithm Based on Feature Fusion and Adaptive Scale Kernel Correlation Filter
计算机科学, 2020, 47(11A): 224-230. https://doi.org/10.11896/jsjkx.200500084
[13] 张良成, 王运锋.
动态自适应的多雷达信息加权融合方法
Dynamic Adaptive Multi-radar Tracks Weighted Fusion Method
计算机科学, 2020, 47(11A): 321-326. https://doi.org/10.11896/jsjkx.2004000145
[14] 龚轩, 乐孜纯, 王慧, 武玉坤.
多目标跟踪中的数据关联技术综述
Survey of Data Association Technology in Multi-target Tracking
计算机科学, 2020, 47(10): 136-144. https://doi.org/10.11896/jsjkx.200200041
[15] 陈威, 李决龙, 邢建春, 杨启亮, 周启臻.
基于核相关滤波器和分层卷积特征的长时间目标跟踪
Long-term Object Tracking Based on Kernelized Correlation Filter and Hierarchical Convolution Features
计算机科学, 2019, 46(9): 271-276. https://doi.org/10.11896/j.issn.1002-137X.2019.09.041
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!