计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 351-359.doi: 10.11896/jsjkx.210100173
杨章静1,2, 王文博1, 黄璞1, 张凡龙1, 王昕1
YANG Zhang-jing1,2, WANG Wen-bo1, HUANG Pu1, ZHANG Fan-long1, WANG Xin1
摘要: 线性回归分类器(Linear Regression Classifier,LRC)是一种有效的图像分类算法,然而LRC未关注数据的局部结构信息,忽略了类内样本之间的差异性,因此当人脸图像存在表情、光照、角度、遮挡等变化时分类性能不佳。针对此问题,文中提出了一种基于局部加权表示的线性回归分类器(Local WeightedRepresentation based Linear Regression Classifier,LWR-LRC)。LWR-LRC首先以测试样本与所有样本的相似性为度量,构建每类样本的加权代表样本;然后将测试样本分解为加权代表样本的线性组合;最后将测试样本分类到重构系数最大的类别。LWR-LRC考虑了样本的局部结构,构建了每类样本的最优代表样本,使用代表样本进行计算,在提高鲁棒性同时,大幅缩短了计算时间。在AR,CMU PIE,FERET和GT数据集上的实验的结果表明,LWR-LRC与NNC,SRC,LRC,CRC,MRC,LMRC等算法相比,在性能上有很强的优越性。
中图分类号:
[1]COVER T M,HART P E.Nearest Neighbor Pattern Classification[J].IEEE Transactions in Information Theory,1953,13(1):21-27. [2]RAFAEL C G,RICHARD E W.Digital Image Processing (3rd Edition)[M].Prentice-Hall,Inc,2007. [3]DUDA R O,HART P E,STORK D G.Pattern Classification[M].Wiley,2004. [4]MITANI Y,HAMAMOTO Y.A Local Mean-based Nonparametric Classifier[M].Elsevier Science Inc,2006,27(10):1151-1159. [5]WRIGHT J,YANG A Y,GANESH A,et al.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227. [6]LIX X,LIANG R H.A Review for Face Recognition with Occlusion:From Subspace Regression to Deep Learning[J].Chinese Journal of computers,2018,41(1):177-207. [7]BING L,YUA C,XIONG W,et al.Multi-View Multi-Instance Learning based on Joint Sparse Representation and Multi-View Dictionary Learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2554-2560. [8]TANG X,FENG G,CAI J.Weighted Group Sparse Representation for Undersampled Face Recognition[J].Neurocomputing,2014,145(5):402-415. [9]GAO S,TSANG W H,CHIA L T.Kernel Sparse Representation for Image Classification and Face Recognition[C]//Proceedings of the 11th European Conference on Computer.2010:1-14. [10]FAN Z,NI M,ZHU Q,et al.Weighted Sparse Representation for Face Recognition[J].Neurocomputing,2015,151:304-309. [11]MOKHAYERI F,GRANGER E.A Paired Sparse Representation Model for Robust Face Recognition from a Single Sample[J].Pattern Recognition,2020,100:107129. [12]LI D,WANG Q,KONG F.Adaptive Kernel Sparse Representation based on Multiple Feature Learning for Hyperspectral Image Classification[J].Neurocomputing,2020,400:97-112. [13]CHENG E J,CHOU K P,RAJORA S,et al.Deep Sparse Representation Classifier for Facial Recognition and Detection System[J].Pattern Recognition Letters,2019,125:71-77. [14]NASEEM I,TOGNERI R,BENNAMOUN M.Linear Regres-sion for Face Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(11):2106-2112. [15]ZHANG L,YANG M,FENG X.Sparse Representation or Collaborative Representation:Which helps Face Recognition? [C]//Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2012:471-478. [16]XU J,YANG J.Mean Representation based Classifier with its Applications[J].Electronics Letters,2011,47(18):1024-1026. [17]HUANG P,QIAN C,YANG G,et al.Local Mean Representation based Classifier and its Applications for Data Classification[J].International Journal of Machine Learning & Cybernetics,2018,9(6):969-978. [18]SERRA J G,TESTA M,MOLINA R,et al.Bayesian K-SVDusing Fast Variational Inference[J].IEEE transactions on image processing:a publication of the IEEE Signal Processing Society,2017,26(7):3344-3359. [19]WEI D,SHEN X,SUN Q,et al.Prototype Learning and Collaborative Representation using Grassmann Manifolds for Image Set Classification[J].Pattern Recognition,2020,100:107123. [20]ZHANG Y,YUAN Y H,OU W H,et al.Weighted Discriminative Collaborative Competitive Representation for Robust Image Classification[J].Neural Networks,2020,125:104-120. [21]ZENG S,ZHANG B,LAN Y,et al.Robust Collaborative Representation-based Classification via Regularization of Truncated Total Least Squares[J].Neural Computing & Applications,2019,31(10):5689-5697. [22]GOU J,HOU B,YUAN Y,et al.A New Discriminative Collaborative Representation-based Classification Method via l 2 Regularizations[J].Neural Computing and Applications,2020,32(8). [23]MA X,HU S,LIU S,et al.Multi-focus Image Fusion based on Joint Sparse Representation and Optimum Theory[J].Signal Processing:Image Communication,2019,78:125-134. [24]HUANG L,MA Y,LIU X.A General Non-Parametric Active Learning Framework for Classification on Multiple Manifolds[J].Pattern Recognition Letters,2020,130:250-258. [25]HUANG P,YANG Z,CHEN C.Fuzzy Local Discriminant Embedding for Image Feature Extraction[J].Computers and Electrical Engineering,2015,46:231-240. [26]YANG M,SHANG R,JIAO L,et al.Feature Selection based Dual-Graph Sparse Non-Negative Matrix Factorization for Local Discriminative Clustering[J].Neurocomputing,2018,290:87-99. [27]YANG J,ZHANG D.Median Fisher Discriminator:a RobustFeature Extraction Method with Applications to Biometrics[J]. Frontiers of Computer Science in China,2008,2(3):295-305. [28]ALEIX M,ROBERT B.The AR Face Database[R].Cvc Technical Report,1998,24. [29]http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html. [30]SIM T,BAKER S,BSAT M.The CMU Pose,Illumination,and Expression database[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1615-1618. [31]A P J P,B H W,B J H,et al.The FERET database and Evaluation Procedure for Face Recognition Algorithms[J].Image and Vision Computing,1998,16(5):295-306. [32]CHEN L,MAN H,NEFIAN A V.Face Recognition based on Multi-class Mapping of Fisher Scores[J].Pattern Recognition,2005,38(6):799-811. |
[1] | 吕由, 吴文渊. 隐私保护线性回归方案与应用 Privacy-preserving Linear Regression Scheme and Its Application 计算机科学, 2022, 49(9): 318-325. https://doi.org/10.11896/jsjkx.220300190 |
[2] | 黄璞, 杜旭然, 沈阳阳, 杨章静. 基于局部正则二次线性重构表示的人脸识别 Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation 计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018 |
[3] | 黄璞, 沈阳阳, 杜旭然, 杨章静. 基于局部约束特征线表示的人脸识别 Face Recognition Based on Locality Constrained Feature Line Representation 计算机科学, 2022, 49(6A): 429-433. https://doi.org/10.11896/jsjkx.210300169 |
[4] | 程祥鸣, 邓春华. 基于无标签知识蒸馏的人脸识别模型的压缩算法 Compression Algorithm of Face Recognition Model Based on Unlabeled Knowledge Distillation 计算机科学, 2022, 49(6): 245-253. https://doi.org/10.11896/jsjkx.210400023 |
[5] | 魏勤, 李瑛娇, 娄平, 严俊伟, 胡辑伟. 基于边云协同的人脸识别方法研究 Face Recognition Method Based on Edge-Cloud Collaboration 计算机科学, 2022, 49(5): 71-77. https://doi.org/10.11896/jsjkx.210300222 |
[6] | 何嘉玉, 黄宏博, 张红艳, 孙牧野, 刘亚辉, 周哲海. 基于深度学习的单幅图像三维人脸重建研究综述 Review of 3D Face Reconstruction Based on Single Image 计算机科学, 2022, 49(2): 40-50. https://doi.org/10.11896/jsjkx.210500215 |
[7] | 陈长伟, 周晓峰. 快速局部协同表示分类器及其在人脸识别中的应用 Fast Local Collaborative Representation Based Classifier and Its Applications in Face Recognition 计算机科学, 2021, 48(9): 208-215. https://doi.org/10.11896/jsjkx.200800155 |
[8] | 温荷, 罗频捷. 基于改进脉冲耦合神经网络的动态人脸识别 Dynamic Face Recognition Based on Improved Pulse Coupled Neural Network 计算机科学, 2021, 48(6A): 85-88. https://doi.org/10.11896/jsjkx.200600172 |
[9] | 段菲, 王慧敏, 张超. 面向数据表示的Cauchy非负矩阵分解 Cauchy Non-negative Matrix Factorization for Data Representation 计算机科学, 2021, 48(6): 96-102. https://doi.org/10.11896/jsjkx.200700195 |
[10] | 白子轶, 毛懿荣, 王瑞平. 视频人脸识别进展综述 Survey on Video-based Face Recognition 计算机科学, 2021, 48(3): 50-59. https://doi.org/10.11896/jsjkx.210100210 |
[11] | 陆要要, 袁家斌, 何珊, 王天星. 基于超分辨率重建的低质量视频人脸识别方法 Low-quality Video Face Recognition Method Based on Super-resolution Reconstruction 计算机科学, 2021, 48(11A): 295-302. https://doi.org/10.11896/jsjkx.201200159 |
[12] | 栾晓, 李晓双. 基于多特征融合的人脸活体检测算法 Face Anti-spoofing Algorithm Based on Multi-feature Fusion 计算机科学, 2021, 48(11A): 409-415. https://doi.org/10.11896/jsjkx.210100181 |
[13] | 邵政毅, 陈秀宏. 基于样本特征核矩阵的稀疏双线性回归 Sample Feature Kernel Matrix-based Sparse Bilinear Regression 计算机科学, 2021, 48(10): 185-190. https://doi.org/10.11896/jsjkx.200800219 |
[14] | 张俊, 王杨, 李坤豪, 李昌, 赵传信. 基于流形学习的多源传感器体域网数据融合模型 Multi-source Sensor Body Area Network Data Fusion Model Based on Manifold Learning 计算机科学, 2020, 47(8): 323-328. https://doi.org/10.11896/jsjkx.191000012 |
[15] | 吴庆洪, 高晓东. 稀疏表示和支持向量机相融合的非理想环境人脸识别 Face Recognition in Non-ideal Environment Based on Sparse Representation and Support Vector Machine 计算机科学, 2020, 47(6): 121-125. https://doi.org/10.11896/jsjkx.190500058 |
|