基于局部加权表示的线性回归分类器及人脸识别

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 351-359.doi: 10.11896/jsjkx.210100173

• 图像处理& 多媒体技术 • 上一篇    下一篇

基于局部加权表示的线性回归分类器及人脸识别

杨章静1,2, 王文博1, 黄璞1, 张凡龙1, 王昕1   

  1. 1 南京审计大学信息工程学院 南京211815
    2 南京审计大学江苏省审计信息工程重点实验室 南京211815
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 黄璞(huangpu3355@163.com)
  • 作者简介:yzj@nau.edu.cn
  • 基金资助:
    国家自然科学基金(U1831127);江苏省产学研合作项目(BY2020033);江苏省高校“青蓝工程”优秀青年骨干教师培养对象

Local Weighted Representation Based Linear Regression Classifier and Face Recognition

YANG Zhang-jing1,2, WANG Wen-bo1, HUANG Pu1, ZHANG Fan-long1, WANG Xin1   

  1. 1 School of Information Engineering,Nanjing Audit University,Nanjing 211815,China
    2 Jiangsu Key Laboratory of Auditing Information Engineering,Nanjing Audit University,Nanjing 211815,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:YANG Zhang-jing ,born in 1979,associate professor.His main research inte-rests include computer vision and pattern recognition,etc.
    HUANG Pu,born in 1985,associate professor.His main research interests include machine learning and pattern recognition,etc.
  • Supported by:
    National Natural Science Foundation of China(U1831127),Industry University Research Cooperation Project in Jiangsu Province(BY2020033) and Qinglan Projects of Colleges and Universities of Jiangsu Province.

摘要: 线性回归分类器(Linear Regression Classifier,LRC)是一种有效的图像分类算法,然而LRC未关注数据的局部结构信息,忽略了类内样本之间的差异性,因此当人脸图像存在表情、光照、角度、遮挡等变化时分类性能不佳。针对此问题,文中提出了一种基于局部加权表示的线性回归分类器(Local WeightedRepresentation based Linear Regression Classifier,LWR-LRC)。LWR-LRC首先以测试样本与所有样本的相似性为度量,构建每类样本的加权代表样本;然后将测试样本分解为加权代表样本的线性组合;最后将测试样本分类到重构系数最大的类别。LWR-LRC考虑了样本的局部结构,构建了每类样本的最优代表样本,使用代表样本进行计算,在提高鲁棒性同时,大幅缩短了计算时间。在AR,CMU PIE,FERET和GT数据集上的实验的结果表明,LWR-LRC与NNC,SRC,LRC,CRC,MRC,LMRC等算法相比,在性能上有很强的优越性。

关键词: 流形学习, 人脸识别, 数据表示, 线性回归

Abstract: Linear regression classifier (LRC) is an effective image classification algorithm.However,LRC does not pay attention to the local structure information of data and ignores the differences among samples within the class,and the performance may degrade when the facial images contain variations in expression,illumination,angle and occlusion.To address this problem,a linear regression classifier based on local weighted representation (LWR-LRC) is proposed.Firstly,LWR-LRC constructs a weighted representative sample for each class of samples based on the similarity between test samples and all samples,then decomposes the test samples into linear combinations of weighted representative samples,finally classifies the test samples into the category with the largest reconstruction coefficient.LWR-LRC considers the local structure of samples,constructs the optimal representative samples of each class of samples,and uses the representative samples to calculate,which improves the robustness and greatly time cost.The experiments on AR,CMU PIE,FERET and GT datasets show that LWR-LRC is superior to NNC,SRC,LRC,CRC,MRC and LMRC.

Key words: Data representation, Face recognition, Linear regression, Manifold learning

中图分类号: 

  • TP391.4
[1]COVER T M,HART P E.Nearest Neighbor Pattern Classification[J].IEEE Transactions in Information Theory,1953,13(1):21-27.
[2]RAFAEL C G,RICHARD E W.Digital Image Processing (3rd Edition)[M].Prentice-Hall,Inc,2007.
[3]DUDA R O,HART P E,STORK D G.Pattern Classification[M].Wiley,2004.
[4]MITANI Y,HAMAMOTO Y.A Local Mean-based Nonparametric Classifier[M].Elsevier Science Inc,2006,27(10):1151-1159.
[5]WRIGHT J,YANG A Y,GANESH A,et al.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
[6]LIX X,LIANG R H.A Review for Face Recognition with Occlusion:From Subspace Regression to Deep Learning[J].Chinese Journal of computers,2018,41(1):177-207.
[7]BING L,YUA C,XIONG W,et al.Multi-View Multi-Instance Learning based on Joint Sparse Representation and Multi-View Dictionary Learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2554-2560.
[8]TANG X,FENG G,CAI J.Weighted Group Sparse Representation for Undersampled Face Recognition[J].Neurocomputing,2014,145(5):402-415.
[9]GAO S,TSANG W H,CHIA L T.Kernel Sparse Representation for Image Classification and Face Recognition[C]//Proceedings of the 11th European Conference on Computer.2010:1-14.
[10]FAN Z,NI M,ZHU Q,et al.Weighted Sparse Representation for Face Recognition[J].Neurocomputing,2015,151:304-309.
[11]MOKHAYERI F,GRANGER E.A Paired Sparse Representation Model for Robust Face Recognition from a Single Sample[J].Pattern Recognition,2020,100:107129.
[12]LI D,WANG Q,KONG F.Adaptive Kernel Sparse Representation based on Multiple Feature Learning for Hyperspectral Image Classification[J].Neurocomputing,2020,400:97-112.
[13]CHENG E J,CHOU K P,RAJORA S,et al.Deep Sparse Representation Classifier for Facial Recognition and Detection System[J].Pattern Recognition Letters,2019,125:71-77.
[14]NASEEM I,TOGNERI R,BENNAMOUN M.Linear Regres-sion for Face Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(11):2106-2112.
[15]ZHANG L,YANG M,FENG X.Sparse Representation or Collaborative Representation:Which helps Face Recognition? [C]//Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2012:471-478.
[16]XU J,YANG J.Mean Representation based Classifier with its Applications[J].Electronics Letters,2011,47(18):1024-1026.
[17]HUANG P,QIAN C,YANG G,et al.Local Mean Representation based Classifier and its Applications for Data Classification[J].International Journal of Machine Learning & Cybernetics,2018,9(6):969-978.
[18]SERRA J G,TESTA M,MOLINA R,et al.Bayesian K-SVDusing Fast Variational Inference[J].IEEE transactions on image processing:a publication of the IEEE Signal Processing Society,2017,26(7):3344-3359.
[19]WEI D,SHEN X,SUN Q,et al.Prototype Learning and Collaborative Representation using Grassmann Manifolds for Image Set Classification[J].Pattern Recognition,2020,100:107123.
[20]ZHANG Y,YUAN Y H,OU W H,et al.Weighted Discriminative Collaborative Competitive Representation for Robust Image Classification[J].Neural Networks,2020,125:104-120.
[21]ZENG S,ZHANG B,LAN Y,et al.Robust Collaborative Representation-based Classification via Regularization of Truncated Total Least Squares[J].Neural Computing & Applications,2019,31(10):5689-5697.
[22]GOU J,HOU B,YUAN Y,et al.A New Discriminative Collaborative Representation-based Classification Method via l 2 Regularizations[J].Neural Computing and Applications,2020,32(8).
[23]MA X,HU S,LIU S,et al.Multi-focus Image Fusion based on Joint Sparse Representation and Optimum Theory[J].Signal Processing:Image Communication,2019,78:125-134.
[24]HUANG L,MA Y,LIU X.A General Non-Parametric Active Learning Framework for Classification on Multiple Manifolds[J].Pattern Recognition Letters,2020,130:250-258.
[25]HUANG P,YANG Z,CHEN C.Fuzzy Local Discriminant Embedding for Image Feature Extraction[J].Computers and Electrical Engineering,2015,46:231-240.
[26]YANG M,SHANG R,JIAO L,et al.Feature Selection based Dual-Graph Sparse Non-Negative Matrix Factorization for Local Discriminative Clustering[J].Neurocomputing,2018,290:87-99.
[27]YANG J,ZHANG D.Median Fisher Discriminator:a RobustFeature Extraction Method with Applications to Biometrics[J].
Frontiers of Computer Science in China,2008,2(3):295-305.
[28]ALEIX M,ROBERT B.The AR Face Database[R].Cvc Technical Report,1998,24.
[29]http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html.
[30]SIM T,BAKER S,BSAT M.The CMU Pose,Illumination,and Expression database[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1615-1618.
[31]A P J P,B H W,B J H,et al.The FERET database and Evaluation Procedure for Face Recognition Algorithms[J].Image and Vision Computing,1998,16(5):295-306.
[32]CHEN L,MAN H,NEFIAN A V.Face Recognition based on Multi-class Mapping of Fisher Scores[J].Pattern Recognition,2005,38(6):799-811.
[1] 吕由, 吴文渊.
隐私保护线性回归方案与应用
Privacy-preserving Linear Regression Scheme and Its Application
计算机科学, 2022, 49(9): 318-325. https://doi.org/10.11896/jsjkx.220300190
[2] 黄璞, 杜旭然, 沈阳阳, 杨章静.
基于局部正则二次线性重构表示的人脸识别
Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation
计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018
[3] 黄璞, 沈阳阳, 杜旭然, 杨章静.
基于局部约束特征线表示的人脸识别
Face Recognition Based on Locality Constrained Feature Line Representation
计算机科学, 2022, 49(6A): 429-433. https://doi.org/10.11896/jsjkx.210300169
[4] 程祥鸣, 邓春华.
基于无标签知识蒸馏的人脸识别模型的压缩算法
Compression Algorithm of Face Recognition Model Based on Unlabeled Knowledge Distillation
计算机科学, 2022, 49(6): 245-253. https://doi.org/10.11896/jsjkx.210400023
[5] 魏勤, 李瑛娇, 娄平, 严俊伟, 胡辑伟.
基于边云协同的人脸识别方法研究
Face Recognition Method Based on Edge-Cloud Collaboration
计算机科学, 2022, 49(5): 71-77. https://doi.org/10.11896/jsjkx.210300222
[6] 何嘉玉, 黄宏博, 张红艳, 孙牧野, 刘亚辉, 周哲海.
基于深度学习的单幅图像三维人脸重建研究综述
Review of 3D Face Reconstruction Based on Single Image
计算机科学, 2022, 49(2): 40-50. https://doi.org/10.11896/jsjkx.210500215
[7] 陈长伟, 周晓峰.
快速局部协同表示分类器及其在人脸识别中的应用
Fast Local Collaborative Representation Based Classifier and Its Applications in Face Recognition
计算机科学, 2021, 48(9): 208-215. https://doi.org/10.11896/jsjkx.200800155
[8] 温荷, 罗频捷.
基于改进脉冲耦合神经网络的动态人脸识别
Dynamic Face Recognition Based on Improved Pulse Coupled Neural Network
计算机科学, 2021, 48(6A): 85-88. https://doi.org/10.11896/jsjkx.200600172
[9] 段菲, 王慧敏, 张超.
面向数据表示的Cauchy非负矩阵分解
Cauchy Non-negative Matrix Factorization for Data Representation
计算机科学, 2021, 48(6): 96-102. https://doi.org/10.11896/jsjkx.200700195
[10] 白子轶, 毛懿荣, 王瑞平.
视频人脸识别进展综述
Survey on Video-based Face Recognition
计算机科学, 2021, 48(3): 50-59. https://doi.org/10.11896/jsjkx.210100210
[11] 陆要要, 袁家斌, 何珊, 王天星.
基于超分辨率重建的低质量视频人脸识别方法
Low-quality Video Face Recognition Method Based on Super-resolution Reconstruction
计算机科学, 2021, 48(11A): 295-302. https://doi.org/10.11896/jsjkx.201200159
[12] 栾晓, 李晓双.
基于多特征融合的人脸活体检测算法
Face Anti-spoofing Algorithm Based on Multi-feature Fusion
计算机科学, 2021, 48(11A): 409-415. https://doi.org/10.11896/jsjkx.210100181
[13] 邵政毅, 陈秀宏.
基于样本特征核矩阵的稀疏双线性回归
Sample Feature Kernel Matrix-based Sparse Bilinear Regression
计算机科学, 2021, 48(10): 185-190. https://doi.org/10.11896/jsjkx.200800219
[14] 张俊, 王杨, 李坤豪, 李昌, 赵传信.
基于流形学习的多源传感器体域网数据融合模型
Multi-source Sensor Body Area Network Data Fusion Model Based on Manifold Learning
计算机科学, 2020, 47(8): 323-328. https://doi.org/10.11896/jsjkx.191000012
[15] 吴庆洪, 高晓东.
稀疏表示和支持向量机相融合的非理想环境人脸识别
Face Recognition in Non-ideal Environment Based on Sparse Representation and Support Vector Machine
计算机科学, 2020, 47(6): 121-125. https://doi.org/10.11896/jsjkx.190500058
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!