基于卷积神经网络和声振图像的磁瓦内部缺陷检测

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 648-654.doi: 10.11896/jsjkx.210100161

• 交叉& 应用 • 上一篇    下一篇

基于卷积神经网络和声振图像的磁瓦内部缺陷检测

刘鑫1, 黄沁元1,2, 李强1, 冉茂霞1, 周颖1, 杨天1   

  1. 1 四川轻化工大学自动化与信息工程学院 四川 自贡643000
    2 人工智能四川省重点实验室 四川 自贡643000
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 黄沁元(qyhuang@suse.edu.cn)
  • 作者简介:lx19502@163.com
  • 基金资助:
    国家自然科学基金项目(61701330)

Fault Detection for Arc Magnet Based on Convolutional Neural Network and Acoustic VibrationImage

LIU Xin1, HUANG Qin-yuan1,2, LI Qiang1, RAN Mao-xia1, ZHOU Ying1, YANG Tian1   

  1. 1 School of Automation and Information Engineering,Sichuan University of Science & Engineering,Zigong,Sichuan 643000,China
    2 Artificial Intelligence Key Laboratory of Sichuan Province,Zigong,Sichuan 643000,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:LIU Xin,born in 1995,postgraduate.His main research interests include deeplearning and intelligent information processing.
    HUANG Qin-yuan,born in 1984,Ph.D,associate professor.His main research interests include artificial intelligence,signal processing and evolutionary computation.
  • Supported by:
    National Natural Science Foundation of China(61701330).

摘要: 磁瓦作为永磁电机中的关键部件,其产品质量易受到内部缺陷的影响而下降。然而传统的声振检测手段在面对快速、精准的检测需求下已暴露出一些低效率的问题,因此开发一种针对磁瓦内部缺陷的高效智能化检测方法具有重要的现实意义。文中结合深度学习的优势,提出了一种基于卷积神经网络的磁瓦内部缺陷声振检测方法。在该方法中,磁瓦的一维声振信号首先被转换为二维声振图像,再输入针对信号特点所设计的卷积神经网络进行学习训练,以完成从声振图像中自主学习和提取能区分内部缺陷有无的信号特征,最后由softmax完成对应特征的识别。4类磁瓦样本的检测实验结果表明,提出的方法可实现准确率为99.38%的磁瓦内部缺陷检测,单片磁瓦的检测时间低于0.031 s,模型具有良好的鲁棒性。

关键词: 磁瓦, 卷积神经网络, 缺陷检测, 深度学习, 声振图像

Abstract: As a key component in permanent magnet motor,the product quality of arc magnet is susceptible to degradation due to internal defects.However,traditional acoustic vibration detection methods have revealed some inefficiencies in the face of fast and accurate inspection requirements,so it is of great practical importance to develop an efficient and intelligent detection method for internal defects in arc magnets.This paper combines the advantages of deep learning and proposes a convolutional neural network-based acoustic vibration detection method for internal defects of arc magnets.In this method,the one-dimensional acoustic vibration signal of the arc magnets is firstly converted into the two-dimensional acoustic vibration image,and then fed into a convolutional neural network designed for the signal characteristics for learning and training,to complete the autonomous learning from the acoustic vibration image and extract the features that can distinguish the presence or absence of internal defects.Finally,the corresponding features are identified by softmax.The experimental results of four types of arc magnet samples show that the proposed method can achieve 99.38% accuracy of internal defect detection of arc magnets,the detection time of a single arc magnet is less than 0.031 s and has a high robustness of the model.

Key words: Acoustic vibration image, Arc magnet, Convolutional neural network, Deep learning, Fault detection

中图分类号: 

  • TG115.28
[1]HUANG Q,XIE L,YIN G,et al.Acoustic signal analysis fordetecting defects inside an arc magnet using a combination of variational mode decomposition and beetle antennae search[J].ISA Transactions,2020,102:347-364.
[2]HUANG Q,YIN Y,ZHAO Y,et al.Acoustic Inspection of In-ternal Defect in Magnetic Tile Based on Bispectrum Analysis[J].Journal of Sichuan University (Engineering Science Edition),2014,46(5):188-194.
[3]RAN M,HUANG Q,LIU X,et al.Internal defect detection of arc magnets based on optimized variational mode decomposition[J].Journal of Zhejiang University (Engineering Science),2020,54(11):2158-2168.
[4]ZHAO Y,YIN M,HUANG Q,et al.Acoustic impact testing of magnetic tile internal defects based on wavelet packet transform and artificial neural network[J].China Measurement & Test,2015,41(6):81-85.
[5]LI C,SANCHEZ R V,ZURITA G,et al.Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis[J].Neurocomputing,2015,168:119-127.
[6]JIA F,LEI Y,LIN J,et al.Deep neural networks:A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J].Mechanical Systems and Signal Processing,2016,72/73:303-315.
[7]LU H,ZHANG Q.Applications of Deep Convolutional Neural Network in Computer Vision[J].Journal of Data Acquisition & Processing,2016,31(1):1-17.
[8]TONG X,WANG B,WANG R,et al.Survey on AdversarialSample of Deep Learning Towards Natural Language Processing[J].Computer Science,2021,48(1):258-267.
[9]LI Y,SIXOU B,PEYRIN F.A review of the deep learningmethods for medical images super resolution problems[J].IRBM,2021,42(2):120-133.
[10]REN H,QU J,CHAI Y,et al.Deep learning for fault diagnosis:The state of the art and challenge[J].Control and Decision:2017,32(8):1345-1358.
[11]YIN Y,XIE L,HUANG T.A deep learning method for magne-tic tile internal defect inspection based on acoustic vibration[J].China Measurement & Test,2020,46(3):32-38.
[12]ZOU Y,ZHANG Y,MAO H.Fault diagnosis on the bearing of traction motor in high-speed trains based on deep learning[J].Alexandria Engineering Journal,2021,60(1):1209-1219.
[13]CHI Y,YANG S,JIAO W.A Multi-label Fault Classification Method for Rolling Bearing Based on LSTM-RNN[J].Journal of Vibration Measurement & Diadnosis,2020,40(3):563-571.
[14]WANG X,MAO D,LI X.Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network[J].Measurement,2021,173(6):108518.
[15]SONG L,SU L,LI K,et al.Fault diagnosis method of rolling bearings based on SSD and 1DCNN[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2020,48(12):38-43.
[16]HOANG D T,KANG H J.Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J].Cognitive Systems Research,2019,53:42-50.
[17]IOFFE S,SZEGEDY C.Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[J].ar-Xiv:1502.03167.
[18]DE BOER P T,KROESE D P,MANNORS,et al.A tutorial on the cross-entropy method[J].Annals of Operations Research,2005,134(1):19-67.
[19]BOCK S,WEIβ M.A proof of local convergence for the Adam optimizer [C]//2019 International Joint Conference on Neural Networks (IJCNN).IEEE,2019:1-8.
[20]YU X H,CHEN G A,CHENG S X.Dynamic learning rate optimization of the backpropagation algorithm[J].IEEE Transactions on Neural Networks,1995,6(3):669-677.
[21]LAURENS V D M,HINTON G.Visualizing Data using t-SNE[J].Journal of Machine Learning Research,2008,9(2605):2579-605.
[22]PAULUZZI D R,BEAULIEU N C.A comparison of SNR estimation techniques for the AWGN channel[J].IEEE Transactions on Communications,2000,48(10):1681-1691.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[3] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[4] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[5] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[6] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[7] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[8] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[9] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[10] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[11] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[12] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[13] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[14] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[15] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!