融合多维标识特征的摄像头身份识别方法

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 565-569.doi: 10.11896/jsjkx.210100093

• 信息安全 • 上一篇    下一篇

融合多维标识特征的摄像头身份识别方法

朱容辰1, 李欣1,2, 王晗旭1, 叶瀚1, 曹志威3, 樊志杰3   

  1. 1 中国人民公安大学信息网络安全学院 北京100038
    2 安全防范技术与风险评估公安部重点实验室 北京100026
    3 公安部第三研究所信息安全技术部 上海200031
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 李欣(lixin@ppsuc.edu.cn)
  • 作者简介:zhurongchen@stu.ppsuc.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(62076246);公安部科技强警基础工作专项项目(2020GABJC01);中国人民公安大学拔尖创新人才培养经费支持研究生科研创新项目(2021yjsky016)

Camera Identity Recognition Method Fused with Multi-dimensional Identification Features

ZHU Rong-chen1, LI Xin1,2, WANG Han-xu1, YE Han1, CAO Zhi-wei3, FAN Zhi-jie3   

  1. 1 School of Information Network Security,People's Public Security University of China,Beijing 100038,China
    2 Key Laboratory of Security Prevention Technology and Risk Assessment of the Ministry of Public Security,Beijing 100026,China
    3 Department of Information Security Technology,The Third Research Institute of Ministry of Public Security,Shanghai 200031,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:ZHU Rong-chen,born in 1996,master.His main research interests include cyber security,video network and machine learning.
    LI Xin,born in 1977,Ph.D,associate professor.His main research interests include cyber security and so on.
  • Supported by:
    National Natural Science Foundation of China(62076246),Science and Technology Project of the Ministry of Public Security(2020GABJC01) and Top Talent Training Special Funding Graduate Research and Innovation Project of People's Public Security University of China(2021yjsky016).

摘要: 随着智慧城市、公安大数据的发展,视频监控网络已成为城市治理的重要基础设施。但是,攻击者通过替换或篡改监控摄像头这一重要的前端设备,能够接入内部网络,实现设备劫持、信息窃取、网络瘫痪,威胁个人、社会与国家安全。为了提前识别非法或可疑的摄像头身份,提出了融合多维标识特征的摄像头身份识别方法。通过提取摄像头静态信息与动态流量信息,构建了融合显性、隐性、动态标识符的摄像头身份标识体系。为选择简洁有效的身份标识符,提出了基于自信息量与信息熵的标识符贡献度评估方法,所抽取的标识符特征向量能够为未来的异常摄像头入侵检测奠定基础。实验结果表明,显性标识符自信息量与贡献度最大,但容易被伪造;动态标识符贡献度次之,但流量收集与处理的工作量较大;静态标识符贡献度较低,但仍有一定的身份标识作用。

关键词: 标识特征, 入侵检测, 摄像头, 身份识别, 自信息量

Abstract: With the development of smart cities and public security big data,video surveillance networks have become essential infrastructure for urban governance.However,by replacing or tampering with surveillance cameras- the important front-end device,an attacker can access the internal network to achieve device hijacking,information theft,network paralysis,and threatening personal,social,and national security.A camera identity recognition method combining multi-dimensional identification features is proposed to identify illegal camera identities in advance.A camera identification system that integrates explicit,implicit,and dynamic identifiers is constructed by extracting the camera's static information and the dynamic flow information.An evaluation method of identifier contribution based on self-information and information entropy is proposed to select a concise and practical identity identifier.The extracted identifier feature vector can lay the foundation for future abnormal camera intrusion detection.Experimental results show that explicit identifiers have the most considerable amount of self-information and contribution but are easy to be forged;dynamic identifiers have the second-highest contribution,but the workload of traffic collection and processing is enormous;static identifiers have a low contribution but still have a specific role in identification.

Key words: Camera, Identification feature, Identity recognition, Intrusion detection, Self-information amount

中图分类号: 

  • TP309
[1]LI X,DUAN Y C,HUANG S H,et al.Construction of network security situation index system for video private network[J].Journal of Beijing University of Aeronautics and Astronautics,2020,46(9):1625-1634.
[2]DUAN Y C.Extraction and evaluation of network security situation elements for video private network[D].Beijing:People's Public Secu-rity University of China,2020.
[3]YIN X M,HU Z L,CHEN G L,et al.Research on IP video private network access detection scheme based on device fingerprint decision tree classification[J].Information Network Secu-rity,2016(12):68-73.
[4]LUO J Z,YANG M,LING Z,et al.Cyberspace Security System and key technologies[J].Chinese Science:Information Science,2016,46(8):939-968.
[5]BUJLOW T,CARELA-ESPAÑOL V,SOLÉ-PARETA J,et al.A Survey on Web Tracking:Mechanisms,Implications,and Defenses[J].Proceedings of the IEEE,2017,105(8):1476-1510.
[6]WANG M,DING Z J.A new method for fingerprint feature selection and model construction of equipment[J].Computer Scie-nce,2020,47(7):257-262.
[7]DANEV B,ZANETTI D,CAPKUN S.On physical-layer identification of wireless devices[J].ACM Computing Surveys,2013,45(1):1-29.
[8]GERDES R,DANIELS T,PHD M,et al.Device Identificationvia Analog Signal Fingerprinting:A Matched Filter Approach[C]//Proceedings of the Network and Distributed System Security Symposium.2006:1-11.
[9]DEY S,ROY N,XU W,et al.AccelPrint:Imperfections of Accelerometers Make Smartphones Trackable[C]//Network and Distributed System Security Symposium.2014:1-16.
[10]LI C T.Source Camera Identification Using Enhanced SensorPattern Noise[J].IEEE Transactions on Information Forensics and Security,2010,5(2):280-287.
[11]LUKAS J,FRIDRICH J,GOLJAN M.Digital camera identification from sensor pattern noise[J].IEEE Transactions on Information Forensics and Security,2006,1(2):205-214.
[12]ZHANG Y T,YAN C H.Research on RFID tag authentication technology based on bidirectional authentication protocol[J].Information Network Security,2016(1):64-69.
[13]YANG W C,GUO Y B,LI T,et al.Identification method and security model of Internet of things based on traffic fingerprint[J].Computer Science,2020,47(7):299-306.
[14]MEIDAN Y,BOHADANA M,SHABTAI A,et al.ProfilIoT:a machine learning approach for IoT device identification based on network traffic analysis[C]//Proceedings of the Symposium on Applied Computing.2017:506-509.
[15]ZHANG L P,LEI D J,ZENG X H.System call intrusion detection method based on frequency eigenvector[J].Computer Scie-nce,2013,40(S1):330-333,339.
[16]YAO D,LUO J Y,CHEN W P,et al.Double random forest real-time intrusion detection method based on improved non extensive entropy feature extraction[J].Computer Science,2013,40(12):192-196,218.
[17]LIN G Y,HUANG H,ZHANG Y P.Research progress of intrusion detection system[J].Computer Science,2008(2):69-74.
[18]LUO C K,CHEN Y X,HU X,et al.Evaluation method of equipment system contribution rate based on combat ring and self information[J].Journal of Shanghai Jiaotong University,2019,53(6):741-748.
[19]PENG C G,DING H F,ZHU Y J,et al.Information entropymodel and measurement method of privacy protection[J].Acta Sinica Sinica,2016,27(8):1891-1903.
[20]CHI Y,GAO Z W.Construction of hybrid P2P network based on self information algorithm[J].Computer Science,2012,39(S1):159-162.
[21]SHANNON C E.A mathematical theory of communication[J].The Bell System Technical Journal,1948,27(3):379-423.
[22]MIETTINEN M,MARCHAL S,HAFEEZ I,et al.IoT SENTINEL:Automated Device-Type Identification for Security Enforcement in IoT[C]//2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).2017.
[1] 王馨彤, 王璇, 孙知信.
基于多尺度记忆残差网络的网络流量异常检测模型
Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network
计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011
[2] 周志豪, 陈磊, 伍翔, 丘东亮, 梁广升, 曾凡巧.
基于SMOTE-SDSAE-SVM的车载CAN总线入侵检测算法
SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm
计算机科学, 2022, 49(6A): 562-570. https://doi.org/10.11896/jsjkx.210700106
[3] 曹扬晨, 朱国胜, 孙文和, 吴善超.
未知网络攻击识别关键技术研究
Study on Key Technologies of Unknown Network Attack Identification
计算机科学, 2022, 49(6A): 581-587. https://doi.org/10.11896/jsjkx.210400044
[4] 魏辉, 陈泽茂, 张立强.
一种基于顺序和频率模式的系统调用轨迹异常检测框架
Anomaly Detection Framework of System Call Trace Based on Sequence and Frequency Patterns
计算机科学, 2022, 49(6): 350-355. https://doi.org/10.11896/jsjkx.210500031
[5] 张师鹏, 李永忠.
基于降噪自编码器和三支决策的入侵检测方法
Intrusion Detection Method Based on Denoising Autoencoder and Three-way Decisions
计算机科学, 2021, 48(9): 345-351. https://doi.org/10.11896/jsjkx.200500059
[6] 李贝贝, 宋佳芮, 杜卿芸, 何俊江.
DRL-IDS:基于深度强化学习的工业物联网入侵检测系统
DRL-IDS:Deep Reinforcement Learning Based Intrusion Detection System for Industrial Internet of Things
计算机科学, 2021, 48(7): 47-54. https://doi.org/10.11896/jsjkx.210400021
[7] 程希, 曹晓梅.
基于信息携带的SQL注入攻击检测方法
SQL Injection Attack Detection Method Based on Information Carrying
计算机科学, 2021, 48(7): 70-76. https://doi.org/10.11896/jsjkx.200600010
[8] 俞建业, 戚湧, 王宝茁.
基于Spark的车联网分布式组合深度学习入侵检测方法
Distributed Combination Deep Learning Intrusion Detection Method for Internet of Vehicles Based on Spark
计算机科学, 2021, 48(6A): 518-523. https://doi.org/10.11896/jsjkx.200700129
[9] 曹扬晨, 朱国胜, 祁小云, 邹洁.
基于随机森林的入侵检测分类研究
Research on Intrusion Detection Classification Based on Random Forest
计算机科学, 2021, 48(6A): 459-463. https://doi.org/10.11896/jsjkx.200600161
[10] 贾琳, 杨超, 宋玲玲, 程镇, 李琲珺.
改进的否定选择算法及其在入侵检测中的应用
Improved Negative Selection Algorithm and Its Application in Intrusion Detection
计算机科学, 2021, 48(6): 324-331. https://doi.org/10.11896/jsjkx.200400033
[11] 王颖颖, 常俊, 武浩, 周详, 彭予.
基于WiFi-CSI的入侵检测方法
Intrusion Detection Method Based on WiFi-CSI
计算机科学, 2021, 48(6): 343-348. https://doi.org/10.11896/jsjkx.200700006
[12] 刘全明, 李尹楠, 郭婷, 李岩纬.
基于Borderline-SMOTE和双Attention的入侵检测方法
Intrusion Detection Method Based on Borderline-SMOTE and Double Attention
计算机科学, 2021, 48(3): 327-332. https://doi.org/10.11896/jsjkx.200600025
[13] 马琳, 王云霄, 赵丽娜, 韩兴旺, 倪金超, 张婕.
基于多模型判别的网络入侵检测系统
Network Intrusion Detection System Based on Multi-model Ensemble
计算机科学, 2021, 48(11A): 592-596. https://doi.org/10.11896/jsjkx.201100170
[14] 郇文明, 林海涛.
基于采样集成算法的入侵检测系统设计
Design of Intrusion Detection System Based on Sampling Ensemble Algorithm
计算机科学, 2021, 48(11A): 705-712. https://doi.org/10.11896/jsjkx.201100101
[15] 孔金生, 李婧馨, 段鹏松, 曹仰杰.
基于Wi-Fi信号的人体身份识别算法研究综述
Survey of Human Identification Algorithms Based on Wi-Fi Signal
计算机科学, 2021, 48(10): 246-257. https://doi.org/10.11896/jsjkx.210100076
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!