面向矢量线数据的直线形状空间检索方法

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 117-123.doi: 10.11896/jsjkx.210100084

• 智能计算 • 上一篇    下一篇

面向矢量线数据的直线形状空间检索方法

刘泽邦, 陈荦, 杨岸然, 李思捷   

  1. 国防科技大学电子科学学院 长沙410073
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 陈荦(luochen@nudt.edu.cn)
  • 作者简介:liuzebang19@nudt.edu.cn
  • 基金资助:
    国家自然科学基金(41971362,41871284)

Space Retrieval Method to Retrieve Straight Line for Vector Line Data

LIU Ze-bang, CHEN Luo, YANG An-ran, LI Si-jie   

  1. College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:LIU Ze-bang,born in 1998,postgra-duate,His main research interests include spatial geographic information system,spatial data analysis and geo-computation methods.
    CHEN Luo,born in 1973,professor,Ph.D,Ph.D supervisor,is a senior member of China Computer Federation.His main research interests include geospatial information processing technology,geographic information system and technology,spatial database system and technology.
  • Supported by:
    National Natural Science Foundation of China(41971362,41871284).

摘要: 形状的认知是空间认知基本问题之一。直线作为最基本的形状,对直线的识别和检索在设备布设、路线规划、车辆测试等方面具有重要的研究意义。针对传统方法对遥感栅格影像进行直线识别时效率低、准确率不高的问题,以矢量数据为研究对象,提出矢量线数据的直线形状空间检索方法。首先,定义“平直度信息量”并提出平直度信息量度量方法,以此描述线要素平直情况;接着,建立了线要素平直序列分段模型,将线要素划分为一组较平直的子段序列;综上两部分,将线要素分段后计算子段平直度信息量,并结合检索条件得到最终检索结果。以OSM路网数据为研究对象,通过实验对比验证该检索方法速度更快,检索结果更全,并且直线道路检索结果不仅在形状上与人的认知相符,而且检索结果中高级道路占比达71.1%,小路仅占2.8%,这与现实中平直道路的属性认知也相符,验证了该方法的可行性与合理性。

关键词: OSM路网, 分段模型, 空间检索, 平直度信息量, 矢量线数据, 直线

Abstract: Shape cognition is one of the basic problems of spatial cognition.As the most basic shape- line,the retrieval based on it has important research significance in equipment layout,route planning and vehicle testing.Aiming at the problem of low efficiency and low accuracy in line recognition of remote sensing image by traditional methods,this paper presents a space retrieval method to retrieve straight line for vector line data.Firstly,in order to describe the flatness of line elements,the concepts of “flatness information” are defined.Then the subsection model of the flat sequence of line elements is established,the line elements are decomposed into a set of relatively straight subsegment sequences.Combined with the above two parts,the flatness information of subsegment is calculated after segmenting the line elements,and the final retrieval results are obtained by combining the retrieval conditions.Taking OSM roads network data as the research object,comparative tests verify that the retrieval method is faster,the retrieval results are more fully,and straight line roads search results are consistent with people's cognitive in shape.Moreover,the proportion of high-grade roads is 71.1%,and the proportion of small roads is only 2.8%,which is also consistent with the cognition of the property of straight roads in reality,and verifies the feasibility and rationality of the method.

Key words: Flatness information, OSM road network, Spatial retrieval, Straight line, Subsection model, Vector line data

中图分类号: 

  • TP391
[1]SHEN W,DU C,JIANG Y,et al.Bag of shape features witha learned pooling function for shape recognition[J].Pattern Recongnition Letters,2018,106:33-40.
[2]LIU P C.Applications of Shape Recognition in Map Generalization[J].Acta Geodaetica et Cartographica Sinica,2012,41(2):316.
[3]WEI Q,WANG L M.Shape Feature Extraction and Recognition Based on Multi-Scale Contour Segments[J].Computer Engineering and Applications,2019,55(5):187-191.
[4]AI Y H.Spatial Shape Cognition and Query[C]// The Geographical Society of China.2007.
[5]GAO J,GONG J H,LU X J,et al.Research on Spatial Cognition in Geographic Information Science(Column introduction)[J].Journal of Remote Sensing,2008(2):338.
[6]SHUAI Z,AI Y H,SHUAI H Y,et al.Polygonal Inquiry Based on Shape Template Matching[J].Geomatics and Information Science of Wuhan University,2008(12):1267-1270.
[7]AI Y H,SHUAI Z,LI J Z.A Spatial Query Based on ShapeSimilarity Cognition[J].Acta Geodaetica et Cartographica Sinica,2009,38(4):356-362.
[8]FU Z L,LU Y F.Establishment of the Comprehensive Model for Similarity of Polygon Entity by Using the Bending Radius Complex Function[J].Acta Geodaetica et Cartographica Sinica,2013,42(1):145-151.
[9]HAO Y L,TANG W J,ZHAO Y X,et al.Areal Feature Matching Algorithm Based on Spatial Similarity[J].Acta Geodaetica et Cartographica Sinica,2008(4):103-108.
[10]AN X Y,SUN Q,XIAO Q,et al.A Shape Multilevel Description Method and Application in Measuring Geometry Similaity of Multi-scale Spatial Data[J].Acta Geodaetica et Cartographica Sinica,2011,40(4):495-501.
[11]YU G,LIU G.Spatial fussy query on shape cognition of 2D objects[J].Computer Engineering and Applications,2012(16):189-193.
[13]XIA Y,ZHU X Y.A Method on Similarity Query of Geographic Entities Based on Shape Feature[J].Geography and Geo-Information Science,2015(1):6-11.
[14]TANG L L,YANG B S,XU K M.The Road Data Change Detection Based on Linear Shape Similarity[J].Geomatics and Information Science of Wuhan University,2008(4):367-370.
[15]SUN J L,CHEN J,DENG M.The Algorithms of GeometrySimilarity Measurement and Experimental Analysis for Linear Spatial Data Transmission[J].Geography and Geo-Information Science,2011,13(5):701-706.
[16]LIU P C,LUO J,AI Y H,et al.Evaluation Model for Similarity Based on Curve Generation[J].Geomatics and Information Science of Wuhan University,2012(1):114-117.
[17]AN X Y,LIU P Z,YANG Y,et al.A Geometric SimilarityMeasurement Method and Applications to Linear Feature[J].Geomatics and Information Science of Wuhan University,2015,40(9):1225-1229.
[18]GUO W Y,LIU H J,SUN Q,et al.A Geometric Similarity Measure Method of Linear Features Based on[J].Journal of Geomatics Science and Technology Longest Common Sequence,2018,35(5):82-87.
[19]WEI S L.Methodological Research on Automatically Recognizing and Extracting morphological cells of linear feature[D].Fuzhou:Fuzhou University,2015.
[20]LI T.Research on Measurement Method of Map Spatial Information-Take the linear target as an example[D].Guilin:Guilin University of Technology,2018.
[21]LIU H M.Methods of Measuring the Spatial Information Content of a Map[D].Changsha:Central South University,2012.
[22]XU D Y,LI Z,LIU Q,et al.The Measurement Method of Spatial Bending Characteristic Information of Linear Elements[J].Technology Innovation and Application,2020,301(9):147-150.
[23]LV J G,WEI C T.A Review of Inversion of the Forest Height by Polarimetric Interferometric SAR[J].Remote Sensing Information,2009(3):15-18,91.
[24]WANG X J,LUO H B,WEI Y W,et al.Extracting Line Segments Method with HOG Feature[J].Infrared and Laser Engineering,2013,42(2):513-518.
[25]FENG P.Research an Extraction Method for Extracting RoadInformation from High Resolution Remote Sensing Images[D].Changsha:National University of Defense Technology,2017.
[26]SHANNON C E.A mathematical theory of communication[J].ACM SIGMOBILE Mobile Computing and Communications Review,2001,5(1):3-55.
[27]LIU P C,YANG Q.Coastline Segment Model Research for Map Generalization Based on Bayesian Method[J].Computer Engineering and Applications,2016,52(22):174-179.
[1] 朱世昕, 杨泽民.
基于半直接方法的序列影像直线特征跟踪匹配算法
Line Tracking and Matching Algorithm Based on Semi-direct Method in Image Sequence
计算机科学, 2019, 46(6A): 270-273.
[2] 张秀峰,张真林,谢红.
掌纹ROI分割算法的研究与实现
Research and Realization of Palmprint ROI Segmentation Algorithm
计算机科学, 2016, 43(Z11): 170-173. https://doi.org/10.11896/j.issn.1002-137X.2016.11A.037
[3] 何立新,孔斌,杨静,许媛媛,王斌.
基于特征分解与组合的圆形阀门把手的检测与定位
Detection and Location on Circular Valve Handle Based on Feature Decomposition and Combination
计算机科学, 2016, 43(4): 284-289. https://doi.org/10.11896/j.issn.1002-137X.2016.04.058
[4] 曲智国,谭贤四,林强,王红,高颖慧.
基于直线Hough变换的图像配准方法
Image Registration Method Based on Straight-line in Hough Parameter Space
计算机科学, 2014, 41(Z11): 107-109.
[5] 李俊瑶,顾宏斌,孙瑾,王德志.
基于多重约束条件的线特征多级匹配方法
Multi-lever Line Matching Method Based on Multiple Constraints
计算机科学, 2014, 41(Z11): 83-87.
[6] 焦利敏,何中市,李佳.
基于分割线的漫画帧识别与自动排序
Frame Recognition and Sort of Comic Pages Based on Split Line
计算机科学, 2013, 40(Z6): 192-195.
[7] 田 垅,刘宗田.
最小二乘法分段直线拟合
Least-squares Method Piecewise Linear Fitting
计算机科学, 2012, 39(Z6): 482-484.
[8] 郭斯羽,翟文娟,唐求,朱院娟.
结合Hough变换与改进最小二乘法的直线检测
Combining the Hough Transform and an Improved Least Squares Method for Line Detection
计算机科学, 2012, 39(4): 196-200.
[9] 王志良,张琼,迟健男,史雪飞.
基于直线射影特征的摄像机参数标定方法
Camera Calibration Based on Projective Lines
计算机科学, 2011, 38(8): 272-274.
[10] 石磊,金忠,杨静宇,王煜.
基于视觉动态模型的道路检测算法研究
Robust Road Detection Based on Vision Dynamic Modeling
计算机科学, 2010, 37(1): 290-293.
[11] 刘文娟 何怡刚.
印鉴识别系统中印鉴录入的研究

计算机科学, 2008, 35(8): 129-130.
[12] .
对称式八步直线生成算法

计算机科学, 2008, 35(3): 247-250.
[13] .
基于多粒度数据融合的直线检测算法

计算机科学, 2007, 34(9): 213-217.
[14] .
利用Beamlet变换算法提取遥感图像直线

计算机科学, 2007, 34(12): 230-232.
[15] 张大朴 李玉山 刘洋 李春明.
采用拟梯度方向信息的随机Hough变换直线检测

计算机科学, 2006, 33(4): 208-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!