基于DenseNet和混合域注意力的COVID-19低剂量CT图像质量评价

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 620-624.doi: 10.11896/jsjkx.201200252

• 交叉& 应用 • 上一篇    下一篇

基于DenseNet和混合域注意力的COVID-19低剂量CT图像质量评价

孙荣荣1, 单飞2, 叶雯2   

  1. 1 上海市计量测试技术研究院 上海201203
    2 上海市公共卫生临床中心 上海201508
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 孙荣荣(sunrr@simt.com.cn)
  • 基金资助:
    上海市2021年度“科技创新行动计划”自然科学基金项目(21ZR1479700);上海市公共卫生体系建设三年行动计划(2020-2022年)重点学科建设计划项目核医学与放射卫生学(GWV-10.1-XK10)

Image Quality Assessment for Low-dose-CT Images of COVID-19 Based on DenseNet and Mixed Domain Attention

SUN Rong-rong1, SHAN Fei2, YE Wen2   

  1. 1 Shanghai Institute of Measurement and Testing Technology,Shanghai 201203,China
    2 Shanghai Public Health Clinical Center,Shanghai 201508,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:SUN Rong-rong,born in 1981,Ph.D,senior engineer.Her main research interests include medical metrology,biomedical engineering,medical images with artificial intelligence and so on.
  • Supported by:
    Natural Science Foundation Project of “Science and Technology Innovation Action Plan” of Shanghai in 2021 (21ZR1479700) and Key Discipline Construction Project of the Three Year Action Plan for the Construction of Shanghai Public Health System (2020-2022) Nuclear Medicine and Radiological Hygiene (GWV-10.1-XK10).

摘要: 研究COVID-19低剂量CT图像质量评价算法具有重要意义,但基于深度学习的方法随着网络层数的增加会出现梯度消失问题,针对此问题,文中提出了基于混合域注意力的DenseNet算法。DenseNet通过特征重用和网络的紧密连接,在减少参数的同时解决了梯度消失问题;基于人眼的注意力机制,将自下至上和自上而下结构相结合以实现空间注意力;基于人眼视觉具有多通道特性,针对空间域注意力忽略通道域中的信息,研究混合域注意力,并将其引入至DenseNet。分别用斯皮尔曼等级次序相关系数、皮尔逊线性相关系数来衡量客观评价方法的测试结果与主观评价之间的一致性。实验结果表明,所提方法可以较好地模拟人类的视觉特性,更加准确地对COVID-19低剂量CT进行质量评价,评价结果与人类视觉主观感受有较好的一致性。

关键词: COVID-19, CT图像, DenseNet, 低剂量, 混合域注意力

Abstract: It is important to study the image quality assessment algorithm of low-dose-CT images for COVID-19.However,with the increase of the number of network layers,the gradient will disappear for the method based on deep learning.To solve this problem,this paper proposes DenseNet algorithm based on mixed domain attention.DenseNet solves the problem of gradient vanishing while reducing parameters through feature reuse and tight connection of network.Based on the attention mechanism of human vision,it adopts the combination of bottom-up and top-down structure to realize spatial attention.Based on the multi-channel characteristics of human vision,this paper ignores the information in the channel domain for spatial attention,studies and introduces the mixed domain attention to DenseNet.Spearman rank order correlation coefficient and Pearson linear correlation coefficient are used to measure the consistency between objective assessment method and subjective assessment method.The experimental results show that this method can simulate the human visual characteristics better,and evaluate the quality of low-dose-CT more accurately.The evaluation results are in good agreement with the subjective feelings of human vision.

Key words: COVID-19, CT images, DenseNet, Low-dose, Mixed domain attention

中图分类号: 

  • TP391
[1]CHENG J Y,CHEN F,ALLEY M T,et al.Highly Scalable Image Reconstruction Using Deep Neural Networks with Bandpass Filtering[J].arXiv:1805.03300,2018.
[2]KÜSTNER T,LIEBGOTT A,MAUCH L,et al.AutomatedReference-Free Detection of Motion Artifacts in Magnetic Resonance Images[J].Magnetic Resonance Materials in Physics,Biology and Medicine,2018,31(2):243-256.
[3]MARDANI M,GONG E,CHENG J Y,et al.Deep Generative Adversarial Neural Networks for Compressive Sensing MRI[J].IEEE Transactions on Medical Imaging,2019,38(1):167-179.
[4]SZEGEDY C,WEI L,YANGQING J,et al.Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2015:1-9.
[5]BOSSE S,MANIRY D,MÜLLER K R,et al.Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment[J].IEEE Transactions on Image Processing,2018,27(1):206-219.
[6]GAO F,YU J,ZHU S,et al.Blind image quality prediction by exploiting multi-level deep representations[J].Pattern Recognition,2018,81:432-442.
[7]FAN C,ZHANG Y,FENG L,et al.No Reference Image Quality Assessment based on Multi-Expert Convolutional Neural Networks[J].IEEE Access,2018,6:8934-8943.
[8]GU J,MENG G,REDI J A,et al.Blind Image Quality Assessment via Vector Regression and Object Oriented Pooling[J].IEEE Transactions on Multimedia,2018,20(5):1140-1153.
[9]SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception v4,inception resnet and the impact of residual connections on lear-ning[C]//The AAAI Conference on Artificial Intelligence,2017:4278-4284.
[10]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016:2818-2826.
[11]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA,2016:770-778.
[12]WU P,LIN G Q,GUO Y R,et al.Self-learning sparse denseNet image classification method[J].Journal of Signal Processing,2019,35(10):1747-1752.
[13]HUANG G,LIU Z,WEINBERGER K Q,et al.Densely connected convolutional networks[C]//CVPR.2017.
[14]IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proc of the 32nd International Conference on Machine Learning.2015:448-456.
[15]GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifierneural networks[C]//Proc of the 14th International Conference on Artificial Intelligence and Statistics.Piscataway,NJ:IEEE Press,2011:315-323.
[16]SHEIKH H R,BOVIK A C.Image information and visual quality [J].IEEE Trans.Image Process.2006,15(2):430-444.
[1] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[2] 刘汉卿, 康晓东, 高万春, 李博, 王亚鸽, 张华丽, 白放.
基于多模型的COVID-19传播研究
Research on Propagation of COVID-19 Based on Multiple Models
计算机科学, 2021, 48(6A): 196-202. https://doi.org/10.11896/jsjkx.201100086
[3] 李一萌, 李成海, 宋亚飞, 王坚.
基于Attention-DenseNet-BC的恶意软件家族分类方法
Method of Malware Family Classification Based on Attention-DenseNet-BC Model Mechanism
计算机科学, 2021, 48(10): 308-314. https://doi.org/10.11896/jsjkx.210200166
[4] 骆岩红.
CT图像重建滤波反投影算法中指数滤波器的研究
Study on Exponential Filter of Filter Back Projection Algorithm for CT Image Reconstruction
计算机科学, 2014, 41(Z6): 220-223.
[5] 陈刚,吕煊,王志成,陈宇飞.
肺CT图像的血管骨架化方法
Vessel Skeletonization Method for Lung CT Images
计算机科学, 2013, 40(5): 274-278.
[6] .
面向RP的工业CT切片数据格式转换软件开发

计算机科学, 2008, 35(1): 263-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!