基于LeNet-5卷积神经网络和颜色特征的限速标志识别

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 345-350.doi: 10.11896/jsjkx.201200213

• 图像处理& 多媒体技术 • 上一篇    下一篇

基于LeNet-5卷积神经网络和颜色特征的限速标志识别

王济民, 魏怡, 周宇, 孙傲, 刘源升   

  1. 武汉理工大学自动化学院 武汉430070
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 魏怡(546247830@qq.com)
  • 作者简介:jiminstark@sina.com
  • 基金资助:
    国家自然科学基金(51177114);湖北省技术创新重大专项(2019AAA016)

Speed Limit Sign Recognition Based on LeNet-5 CNN and Color Feature

WANG Ji-min, WEI Yi, ZHOU Yu, SUN Ao, LIU Yuan-sheng   

  1. School of Automation,Wuhan University of Technology,Wuhan 430070,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:WANG Ji-min,born in 1995,postgraduate.His main research interests include image processing and computer vision machine learning.
    WEI Yi,born in 1972,Ph.D,professor.Her main research interests include pattern recognition,machine vision and image data processing.
  • Supported by:
    National Natural Science Foundation of China(51177114) and Hubei Province Technical Innovation Major Project(2019AAA016).

摘要: 限速标志识别是智能驾驶的重要组成部分,文中分析了现有方法存在的问题,为了提高神经网络在中国限速标志上的泛用性和准确率,针对限速标志的检测部分,提出了一种基于颜色空间的新型筛选方法;针对限速标志的识别部分,在现有LeNet-5架构的基础上对神经网络进行了改进,并将德国交通标志数据集(GTSRB)和清华交通标志数据集(TT100K)中限速标志数据融合,经过数据扩增后制作成新的数据集送入神经网络来训练模型。通过多次超参数优化,采用swish激活函数,在测试集上得到的最优识别准确率为99.62%,且模型抗干扰能力强,具有较强的实用性能。

关键词: 高斯圆检测, 卷积神经网络, 数据增广, 限速标志识别, 颜色空间

Abstract: Speed limit sign recognition is an important part of intelligent driving.This research analyzes the problems of existing methods.In order to improve the versatility and accuracy of neural networks on Chinese speed limit signs,in the detection part of speed limit signs,a new screening method based on color space is proposed.In the recognition part of the speed limit sign,the neural network is improved on the basis of the existing LeNet-5 architecture.By fusing the German traffic sign data set (GTSRB) and Tsinghua traffic sign data set (TT100K),a new data set is made and sent to the neural network to train the model after data amplification.Using swish activation function,the optimal recognition accuracy rate obtained on the test set is 99.62%,and the model has strong anti-interference ability and strong practical performance.

Key words: Color space, Convolutional neural network, Data augmentation, Gaussian circle detection, Speed limit sign recognition

中图分类号: 

  • TP391
[1]Research Conducted at Thapar Institute of Engineering & Technology Has Provided New Information about Computers (Convolutional neural networks for 5G-enabled Intelligent Transportation System:A systematic review)[OL].2020.https://schlr.cnki.net/en/Detail/index/SPQD_01/SPQD73CCA540D660505DD9722C234860CC94.
[2]ZHANG W C,CHEN L H,WU W,et al.Traffic sign recognition based on feature fusion of convolutional neural network[J].Computer Applications,2019,39(S1):21-25.
[3]QIN Y Y,CUI W,LI Q,et al.Traffic Sign Image Enhancement in Low Light Environment[J].Procedia Computer Science,2019,154:596-602.
[4]WANG K,LI G,CHEN J L,et al.The adaptability and challenges of autonomous vehicles to pedestrians in urban China[J].Accident Analysis and Prevention,2020,145:3-20.
[5]BABIĆ D,DIJANIĆ H,JAKOB L,et al.Driver eye movements in relation to unfamiliar traffic signs:An eye tracking study[OL].https://schlr.cnki.net/en/Detail/index/SPQDLAST/SPQDD24246DA474CA363DCF4B4D82921E24F.
[6]LI H J,SUN F M,LIU L J,et al.A novel traffic sign detection method via color segmentation and robust shape matching[J].Neurocomputing,2015,169:77-88.
[7]CANNY F.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
[8]ZHU Z,LIANG D,ZHANG S,et al.Traffic-Sign Detection and Classification in the Wild[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2016.
[9]On the Improvement of Multiple Circles Detection from Images using Hough Transform[J].TEMA (São Carlos),2019,20(2):35-60.
[10]MATSUGU M,MORI K,MITARI Y,et al.Subject independent facial expression recognition with robust face detection using a convolutional neural network[J].Neural Networks,2003,16(5):555-559.
[11]BI Z Q,YU L,GAO H H,et al.Improved VGG model-based efficient traffic sign recognition for safe driving in 5G scenarios[J].International Journal of Machine Learning and Cybernetics,2020:1-50.
[12]SEBASTIAN H,JOHANNES S,JAN S,et al.Detection ofTraffic Signs in Real-World Images:The German Traffic Sign Detection Benchmark[C]//Proceedings of the International Joint Conference on Neural Networks.2013.
[13]LECUN Y,BOSER B,DENKER J S,et al.Backpropagation Applied to Handwritten Zip Code Recognition[J].Neural Computation,1989,1(4):541-551.
[14]YAZDAN R,VARSHOSAZ M.Improving traffic of scale and rotation[J].ISPRS Journal of Photogrammetry and Remote Sensing,2021,171:18-35.
[15]OMAR B,WAHIDA H.Tabaa Mohamed Improved Traffic Sign Recognition Using Deep ConvNet Architecture[J].Procedia Computer Science,2020,177:75-100.
[16]SONG S,QUE Z,HOU J,et al.An efficient convolutional neural network for small traffic sign detection[J].Journal of Systems Architecture,2019:1-60.
[17]SANYAL B,MOHAPATRA R K,DASH R.Traffic Sign Recognition:A Survey[C]//International Conference on Artificial Intelligence and Signal Processing (AISP).Amaravati,India,2020:1-6.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[3] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[4] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[5] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[6] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[7] 杨炳新, 郭艳蓉, 郝世杰, 洪日昌.
基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用
Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition
计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070
[8] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[9] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[10] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[11] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[12] 孙福权, 崔志清, 邹彭, 张琨.
基于多尺度特征的脑肿瘤分割算法
Brain Tumor Segmentation Algorithm Based on Multi-scale Features
计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217
[13] 吴子斌, 闫巧.
基于动量的映射式梯度下降算法
Projected Gradient Descent Algorithm with Momentum
计算机科学, 2022, 49(6A): 178-183. https://doi.org/10.11896/jsjkx.210500039
[14] 杨涵, 万游, 蔡洁萱, 方铭宇, 吴卓超, 金扬, 钱伟行.
基于步态分类辅助的虚拟IMU的行人导航方法
Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification
计算机科学, 2022, 49(6A): 759-763. https://doi.org/10.11896/jsjkx.211200148
[15] 王杉, 徐楚怡, 师春香, 张瑛.
基于CNN-LSTM的卫星云图云分类方法研究
Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM
计算机科学, 2022, 49(6A): 675-679. https://doi.org/10.11896/jsjkx.210300177
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!