计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 345-350.doi: 10.11896/jsjkx.201200213
王济民, 魏怡, 周宇, 孙傲, 刘源升
WANG Ji-min, WEI Yi, ZHOU Yu, SUN Ao, LIU Yuan-sheng
摘要: 限速标志识别是智能驾驶的重要组成部分,文中分析了现有方法存在的问题,为了提高神经网络在中国限速标志上的泛用性和准确率,针对限速标志的检测部分,提出了一种基于颜色空间的新型筛选方法;针对限速标志的识别部分,在现有LeNet-5架构的基础上对神经网络进行了改进,并将德国交通标志数据集(GTSRB)和清华交通标志数据集(TT100K)中限速标志数据融合,经过数据扩增后制作成新的数据集送入神经网络来训练模型。通过多次超参数优化,采用swish激活函数,在测试集上得到的最优识别准确率为99.62%,且模型抗干扰能力强,具有较强的实用性能。
中图分类号:
[1]Research Conducted at Thapar Institute of Engineering & Technology Has Provided New Information about Computers (Convolutional neural networks for 5G-enabled Intelligent Transportation System:A systematic review)[OL].2020.https://schlr.cnki.net/en/Detail/index/SPQD_01/SPQD73CCA540D660505DD9722C234860CC94. [2]ZHANG W C,CHEN L H,WU W,et al.Traffic sign recognition based on feature fusion of convolutional neural network[J].Computer Applications,2019,39(S1):21-25. [3]QIN Y Y,CUI W,LI Q,et al.Traffic Sign Image Enhancement in Low Light Environment[J].Procedia Computer Science,2019,154:596-602. [4]WANG K,LI G,CHEN J L,et al.The adaptability and challenges of autonomous vehicles to pedestrians in urban China[J].Accident Analysis and Prevention,2020,145:3-20. [5]BABIĆ D,DIJANIĆ H,JAKOB L,et al.Driver eye movements in relation to unfamiliar traffic signs:An eye tracking study[OL].https://schlr.cnki.net/en/Detail/index/SPQDLAST/SPQDD24246DA474CA363DCF4B4D82921E24F. [6]LI H J,SUN F M,LIU L J,et al.A novel traffic sign detection method via color segmentation and robust shape matching[J].Neurocomputing,2015,169:77-88. [7]CANNY F.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698. [8]ZHU Z,LIANG D,ZHANG S,et al.Traffic-Sign Detection and Classification in the Wild[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2016. [9]On the Improvement of Multiple Circles Detection from Images using Hough Transform[J].TEMA (São Carlos),2019,20(2):35-60. [10]MATSUGU M,MORI K,MITARI Y,et al.Subject independent facial expression recognition with robust face detection using a convolutional neural network[J].Neural Networks,2003,16(5):555-559. [11]BI Z Q,YU L,GAO H H,et al.Improved VGG model-based efficient traffic sign recognition for safe driving in 5G scenarios[J].International Journal of Machine Learning and Cybernetics,2020:1-50. [12]SEBASTIAN H,JOHANNES S,JAN S,et al.Detection ofTraffic Signs in Real-World Images:The German Traffic Sign Detection Benchmark[C]//Proceedings of the International Joint Conference on Neural Networks.2013. [13]LECUN Y,BOSER B,DENKER J S,et al.Backpropagation Applied to Handwritten Zip Code Recognition[J].Neural Computation,1989,1(4):541-551. [14]YAZDAN R,VARSHOSAZ M.Improving traffic of scale and rotation[J].ISPRS Journal of Photogrammetry and Remote Sensing,2021,171:18-35. [15]OMAR B,WAHIDA H.Tabaa Mohamed Improved Traffic Sign Recognition Using Deep ConvNet Architecture[J].Procedia Computer Science,2020,177:75-100. [16]SONG S,QUE Z,HOU J,et al.An efficient convolutional neural network for small traffic sign detection[J].Journal of Systems Architecture,2019:1-60. [17]SANYAL B,MOHAPATRA R K,DASH R.Traffic Sign Recognition:A Survey[C]//International Conference on Artificial Intelligence and Signal Processing (AISP).Amaravati,India,2020:1-6. |
[1] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
[2] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[3] | 陈泳全, 姜瑛. 基于卷积神经网络的APP用户行为分析方法 Analysis Method of APP User Behavior Based on Convolutional Neural Network 计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121 |
[4] | 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥. 基于注意力机制的医学影像深度哈希检索算法 Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism 计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153 |
[5] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[6] | 金方焱, 王秀利. 融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取 Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM 计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190 |
[7] | 杨炳新, 郭艳蓉, 郝世杰, 洪日昌. 基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用 Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition 计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070 |
[8] | 张颖涛, 张杰, 张睿, 张文强. 全局信息引导的真实图像风格迁移 Photorealistic Style Transfer Guided by Global Information 计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036 |
[9] | 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮. 基于DNGAN的磁共振图像超分辨率重建算法 Super-resolution Reconstruction of MRI Based on DNGAN 计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105 |
[10] | 刘月红, 牛少华, 神显豪. 基于卷积神经网络的虚拟现实视频帧内预测编码 Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network 计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179 |
[11] | 徐鸣珂, 张帆. Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法 Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition 计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085 |
[12] | 孙福权, 崔志清, 邹彭, 张琨. 基于多尺度特征的脑肿瘤分割算法 Brain Tumor Segmentation Algorithm Based on Multi-scale Features 计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217 |
[13] | 吴子斌, 闫巧. 基于动量的映射式梯度下降算法 Projected Gradient Descent Algorithm with Momentum 计算机科学, 2022, 49(6A): 178-183. https://doi.org/10.11896/jsjkx.210500039 |
[14] | 杨涵, 万游, 蔡洁萱, 方铭宇, 吴卓超, 金扬, 钱伟行. 基于步态分类辅助的虚拟IMU的行人导航方法 Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification 计算机科学, 2022, 49(6A): 759-763. https://doi.org/10.11896/jsjkx.211200148 |
[15] | 王杉, 徐楚怡, 师春香, 张瑛. 基于CNN-LSTM的卫星云图云分类方法研究 Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM 计算机科学, 2022, 49(6A): 675-679. https://doi.org/10.11896/jsjkx.210300177 |
|