计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 391-395.doi: 10.11896/jsjkx.201200127
程铭, 马佩, 何儒汉
CHENG Ming, MA Pei, HE Ru-han
摘要: 随着大规模时尚数据集的公开,基于深度学习的服装图像分类得到快速发展。然而,目前服装图像分类多数是在同一件服装具有单张的、正面或接近正面的图像的场景下进行分类,这导致了当视角发生变化时常出现服装图像误分类的情况,现实中服装具有的形变大、遮挡严重等特性进一步加剧了该问题。基于上述问题,提出了一种基于流形结构神经网络的服装图像集分类方法,利用流形空间更好地表示服装的内部结构特征。该方法选用多视角度服装图像集作为实验数据集,首先通过卷积神经网络提取服装图像集的浅层特征,再通过协方差池化将欧氏数据转换为流形数据,最后通过基于流形结构的神经网络学习服装图像集的内部结构特征,获取准确的分类结果。实验结果表明,所提方法在MVC数据集上的Precision、Recall和F-1指标可达到89.64%,89.12%和88.69%,与现有的图像集(视频)分类算法相比,其分别获得了2.04%,2.65%和2.70%的提升,该方法比已有算法更加准确、高效、鲁棒。
中图分类号:
[1]CHENG W H,SONG S,CHEN C Y,et al.Fashion Meets Computer Vision:A Survey[J].arXiv:2003.13988,2020. [2]LEE S,OH S,JUNG C,et al.A global-local embedding module for fashion landmark detection [C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2019. [3]GE Y,ZHANG R,WANG X,et al.Deepfashion2:A versatile benchmark for detection,pose estimation,segmentation and re-identification of clothing images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:5337-5345. [4]WANG W,ZHANG Z,QI S,et al.Learning compositional neural information fusion for human parsing[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:5703-5713. [5]WANG W,XU Y,SHEN J,et al.Attentive fashion grammarnetwork for fashion landmark detection and clothing category classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4271-4280. [6]MALL U,MATZEN K,HARIHARAN B,et al.Geostyle:Discovering fashion trends and events[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:411-420. [7]WU B,CHENG W H,LIU P,et al.SMP challenge:An overview of social media prediction challenge 2019[C]//Proceedings of the 27th ACM International Conference on Multimedia.2019:2667-2671. [8]DONG H,LIANG X,SHEN X,et al.Fw-gan:Flow-navigated warping gan for video virtual try-on[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:1161-1170. [9]BALASKRISHNAN G,ZHAO A,DALCA A V,et al.Synthesizing images of humans in unseen poses[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8340-8348. [10]SANTESTEBAN I,OTADUY M A,CASAS D.Learning-Based Animation of Clothing for Virtual Try-On[J].Computer Graphics Forum,2019,38(2):355-366. [11]SONG X,HAS X,LI Y,et al.GP-BPR:Personalized Compatibility Modeling for Clothing Matching[C]//Proceedings of the 27th ACM International Conference on Multimedia.2019:320-328. [12]DONG X,SONG X,FENG F,et al.Personalized Capsule Wardrobe Creation with Garment and User Modeling[C]//Proceedings of the 27th ACM International Conference on Multimedia.2019:302-310. [13]LIU Z,LUO P,QIU S,et al.Deepfashion:Powering robustclothes recognition and retrieval with rich annotations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1096-1104. [14]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [15]HE K,GKIOXARI G,DOLLAR P,et al.Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2961-2969. [16]LIU K H,CHEN T Y,CHEN C S.Mvc:A dataset for view-invariant clothing retrieval and attribute prediction[C]//Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval.2016:313-316. [17]DONAHUE J,ANNE HENDRICKS L,GUADARRAMA S,et al.Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:2625-2634. [18]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [19]TRAN D,BOURDEV L,FERGUS R,et al.Learning spatiotemporal features with 3d convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:4489-4497. [20]SIMONYAN K,ZISSERMAN A.Two-stream convolutionalnetworks for action recognition in videos[C]//Advances in Neural Information Processing Systems.2014:568-576. [21]HUANG Z,GOOL L V.A riemannian network for SPD matrix learning[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.2017:2036-2042. [22]HUANG Z,WU J,GOOL L V.Building Deep Neural Networks on Grassmann Manifolds[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence.2018:3279-3286. [23]CHAKRABORTY R,BOUZA J,MANTON J,et al.Manifoldnet:A deep neural network for manifold-valued data with applications[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence.2020. [24]ACHARYA D,HUANG Z,PANI P D,et al.Covariance pooling for facial expression recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2018:367-374. [25]WANG W,XU Y,SHEN J,et al.Attentive fashion grammarnetwork for fashion landmark detection and clothing category classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4271-4280. [26]BRONSTEIN M M,BTUNA J,LECUN Y,et al.Geometricdeep learning:going beyond euclidean data[J].IEEE Signal Processing Magazine,2017,34(4):18-42. [27]MASCI J,BOSCAINI D,BRONSTEIN M,et al.Geodesic convolutional neural networks on riemannian manifolds[C]//Proceedings of the IEEE international Conference on Computer Vision Workshops.2015:37-45. [28]NHUYEN X S,BRUN L,LEZORAY O,et al.Skeleton-based hand gesture recognition by learning SPD matrices with neural networks[C]//2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019).IEEE,2019:1-5. [29]QIAO S,WANG R,SHAN S,et al.Deep heterogeneous hashing for face video retrieval[J].IEEE Transactions on Image Processing,2019,29:1299-1312. [30]LI C,ZHANG B,CHEN C,et al.Deep manifold structure transfer for action recognition[J].IEEE Transactions on Image Processing,2019,28(9):4646-4658. [31]WANG R,GUO H,DAVIS L S,et al.Covariance discriminative learning:A natural and efficient approach to image set classification[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2012:2496-2503. |
[1] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[2] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[3] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[4] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[5] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[6] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[7] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[8] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[9] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[10] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[11] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[12] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
[13] | 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋. 改进Faster R-CNN的光学遥感飞机目标检测 Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN 计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121 |
[14] | 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤. 不同数据增强方法对模型识别精度的影响 Influence of Different Data Augmentation Methods on Model Recognition Accuracy 计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210 |
[15] | 毛典辉, 黄晖煜, 赵爽. 符合监管合规性的自动合成新闻检测方法研究 Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance 计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083 |
|