基于YOLOv3算法的山区铁路边坡落石检测方法研究

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 290-294.doi: 10.11896/jsjkx.201200113

• 图像处理& 多媒体技术 • 上一篇    下一篇

基于YOLOv3算法的山区铁路边坡落石检测方法研究

刘林芽, 吴送英, 左志远, 曹子文   

  1. 华东交通大学铁路环境振动与噪声教育部工程研究中心 南昌330013
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 吴送英(1969640885@qq.com)
  • 作者简介:lly1949@163.com
  • 基金资助:
    国家自然科学基金项目(51578238,51968025);江西省自然科学基金重点项目(20192ACBL2009)

Research on Rockfall Detection Method of Mountain Railway Slope Based on YOLOv3 Algorithm

LIU Lin-ya, WU Song-ying, ZUO Zhi-yuan, CAO Zi-wen   

  1. School of Civil Architecture,East China Jiaotong University,Railway Noise and Vibration Environment Engineering Research Center of the Ministry of Education,Nanchang 330013,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:LIU Lin-ya,born in 1973,professor,doctoral supervisor.His main research interests include railway noise and vibration environment.
    WU Song-ying,born in 1997,master.His main research interests include deep learning and so on.
  • Supported by:
    National Natural Science Foundation of China(51578238,51968025) and Key Program of Natural Science Foundation of Jiangxi Province of China(20192ACBL2009).

摘要: 铁路沿线地段边坡落石检测对保障铁路沿线通车安全具有重要的现实意义。现有的检测方法存在检测成本高、操作复杂等缺点,针对以上问题,文中提出使用智能手机及民用相机结合补光器在实地多山地区采集多尺寸、多形状的各类岩石样本,利用深度卷积网络进行学习,提取落石样本相应特征进行训练,引入YOLOv3算法,构建山区铁路边坡落石检测深度学习模型,从而实现对山区铁路沿线地段边坡落石的实时检测,此外设置Faster RCNN算法作为平行对比实验。实验结果表明,两种检测算法都能达到较高的检测精度,YOLOv3算法较Faster RCNN算法的检测精度相对偏低,但其对体积较小的落石目标更加敏感,更具捕捉性,且检测速度更快,更能满足实际工程的需要。

关键词: 边坡落石, 迁移学习, 深度学习, 智能手机

Abstract: The existing detection methods have the disadvantages of high detection cost and complex operation.In view of the above problems,this paper proposes to use smart phones and civilian cameras combined with light compensation device to collect various rock samples of various sizes and shapes in mountainous areas,and use deep convolution network to learn and extract the corresponding characteristics of rock samples for training.At the same time,yolov3 algorithm is introduced to build the depth learning model of slope rockfall detection of mountain railway,so as to realize the real-time detection of slope rockfall along the mountain railway.In addition,fast RCNN algorithm is set as a parallel comparative experiment.The experimental results show that the two detection algorithms can achieve high detection accuracy.Compared with fast RCNN algorithm,the detection accuracy of yolov3 algorithm is relatively low,but it is more sensitive to the small rockfall target,more capturing,and the detection speed is faster,which can better meet the actual engineering needs.

Key words: Deep learning, Slope rockfall, Smart phone, Transfer learning

中图分类号: 

  • TP391
[1]DENG C.Research and application of fiber Bragg grating sensing technology for monitoring dangerous rock and rockfall on Yiwan railway slope[J].Railway Communication and Signal Engineering Technology,2012,9(2):27-30.
[2]WANG J,YE M,MA F S,et al.Design and implementation of collapse and rockfall monitoring and early warning system based on video image recognition[J].Journal of Applied Basic and Engineering Sciences,2014,22(5):952-963.
[3]SU J L,CHEN Y X,HONG X L.An Application of Object Detection Based on YOLOv3 in Traffic[C]//Proceedings of the 2019 International Conference on Image,Video and Signal Processing.2019:68-72.
[4]YU N T,GUO D Y,ZHE W,et al.Apple detection duringdifferent growth stages in orchards using the improved YOLO-V3 model[J].Computers and Electronics in Agriculture,2019(157):417-426.
[5]BILEL B,TAHA K,ANIS K,et al.Car Detection usingUnmanned Aerial Vehicles:Comparison between Faster R-CNN and YOLOv3[C]//Computer Vision and Pattern Recognition (cs.CV).2019.
[6]LIU C,GUO L J,ZHANG R,et al.Application of improved YOLOv3 algorithm in container number location[J].Sensors and Microsystems,2019,38(7):157-160.
[7]GAO Q,LIAN Q W.Insulator target detection in aerial images[J].Electrical Measurement and Instrumentation,2019,56(5):119-123.
[8]WU T,WANG W B,YU L,et al.Insulator defect detection method of lightweight YOLOv3[J].Computer Engineering,2019,45(8):275-280.
[9]LIU B,WANG S Z,ZHAO J S,et al.Ship tracking recognition based on Darknet network and YOLOv3 algorithm[J].Computer Application,2019,39(6):1663-1668.
[10]LI Y P,HOU L Y,WANG C.Moving object detection in automatic driving based on YOLOv3[J].Computer engineering and design,2019,40(4):1139-1144.
[11]ZHANG F K,YANG F,LI C.Fast vehicle detection methodbased on improved YOLOv3[J].Computer Engineering and Application,2019,55(2):12-20.
[12]JING L I,HUANG S,UNIVERSITY S,et al.YOLOv3 Based Object Tracking Method[J].Electronics Optics & Control,2019,33(1):15-23.
[13]XUE J L,DAI J G,ZHAO Q Z,et al.Weed detection in cotton field based on low altitude UAV image and YOLOv3[J].Journal of Shihezi University (Natural Science Edition),2019,37(1):21-27.
[14]YU N T,GUO D Y,ZHE W,et al.Detection of Apple Lesions in Orchards Based on Deep Learning Methods of CycleGAN and YOLOv3-Dense[J].Journal of Sensors,2019,76(3):926-938.
[15]MORTEN B J,KAMAL N,THOMAS B M.Evaluating State-of-the-art Object Detector on Challenging Traffic Light Data[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.2017:9-15.
[16]XIE L,AHMAD T,JIN L,et al.A New CNN-Based Method for Multi-Directional Car License Plate Detection[J].IEEE Transactions on Intelligent Transportation Systems,2018,27(8):1-11.
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[5] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[6] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[7] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[8] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[9] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[10] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[11] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[12] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[13] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[14] 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰.
基于多源迁移学习的大坝裂缝检测
Dam Crack Detection Based on Multi-source Transfer Learning
计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124
[15] 楚玉春, 龚航, 王学芳, 刘培顺.
基于YOLOv4的目标检测知识蒸馏算法研究
Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4
计算机科学, 2022, 49(6A): 337-344. https://doi.org/10.11896/jsjkx.210600204
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!