计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 275-277.doi: 10.11896/jsjkx.201200102
王文博, 罗恒利
WANG Wen-bo, LUO Heng-li
摘要: 人脸聚类是根据不同身份对人脸图像进行分组的方法,主要用于人脸标注和图像管理等领域。针对现有方法中存在大量冗余数据的问题,文中使用一种基于完全图约束和上下文关系进行链接预测的方法。该聚类算法基于图卷积神经网络进行链接预测,结合完全图约束筛选数据,同时在预测的过程中对链接关系进行不断的更新。实验结果显示,结合完全图约束的人脸聚类方法能够在减少冗余数据、加快运行速度的同时,提升聚类的准确率,从而提高聚类的整体效果。
中图分类号:
[1]ZHANG Z,LUO P,CHEN C L,et al.Joint face representation adaptation and clustering in videos[C]//European Conference on Computer Vision.Springer,2016:236-251. [2]SUN Y,WANG X,TANG X.Deep Learning Face Representation by Joint Identification-Verification[C]//Advances in Neural Information Processing Systems.2014:1988-1996. [3]SUN Y,WANG X,TANG X,et al.Deep Learning Face Representation from Predicting 10 000 Classes[C]//Processing of the IEEE Conference on Computer Vision and Pattern Recognition.2014:1891-1898. [4]https://github.com/cmusatyalab/openface. [5]DENG J,GUO J,XU E N,et al.ArcFace:Additive AngularMargin Loss for Deep Face Recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2019. [6]MACQUEEN J.Some Methods for Classification and Analysis of Multi-Variate Observations[C]//Proc of Berkeley Symposiumon Mathematica lStatistics & Probability.1965. [7]BIRANT D,KUT A.ST-DBSCAN:An algorithm for clustering spatial-temporal data[J].Data & Knowledge Engineering,2007,60(1):208-221. [8]SHI Y,OTTO C,JAIN A K.Face clustering:representation and pairwise constraints[J].IEEE Transactions on Information Forensics and Security,2018,13(7):1626-1640. [9]LIN W,CHEN J,CASTILLO C D,et al.Deep Density Clust-ering of Unconstrained Faces[C]//IEEE/CVF Conference onComputer Vision and Pattern Recognition.2018:8128-8137. [10]WANG Z D,ZHENG L,LI Y L,et al.Linkage Based Face Clustering via Graph Convolution Network[C]//Processing of the IEEE Conference on Computer Vision and Pattern Recognition.2019:1117-1125. [11]YANG L,ZHAN X,CHEN D,et al.Learning to Cluster Faces on an Affinity Graph[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:2293-2301. [12]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J/OL].Machine Learning;Statistics-Machine Learning.2016.https://arxiv.org/abs/1609.02907. [13]GUO Y,ZHANG L,HU Y,et al.MS-Celeb-1M:A Dataset and Benchmark for Large-Scale Face Recognition[C]//BEuropean Conference on Computer Vision.2016:87-102. [14]YI D,LEI Z,LIAO S,et al.Learning face representation fromscratch[C]//Processing of the IEEE Conference on Computer Vision and Pattern Recognition.2014. [15]WHITELAM C,TABORSKY E,BLANTON A,et al.IARPA Janus Benchmark-B Face Dataset[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).IEEE,2017. [16]AMIG E,GONZALO J,ARTILES J,et al.A comparison of extrinsic clustering evaluation metrics based on formal constraints[J].Information Retrieval,2009,12(5):613. |
[1] | 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲. 基于无监督集群级的科技论文异质图节点表示学习方法 Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level 计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196 |
[2] | 黄丽, 朱焱, 李春平. 基于异构网络表征学习的作者学术行为预测 Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning 计算机科学, 2022, 49(9): 76-82. https://doi.org/10.11896/jsjkx.210900078 |
[3] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[4] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[5] | 李子仪, 周夏冰, 王中卿, 张民. 基于用户关联的立场检测 Stance Detection Based on User Connection 计算机科学, 2022, 49(5): 221-226. https://doi.org/10.11896/jsjkx.210400135 |
[6] | 高越, 傅湘玲, 欧阳天雄, 陈松龄, 闫晨巍. 基于时空自适应图卷积神经网络的脑电信号情绪识别 EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network 计算机科学, 2022, 49(4): 30-36. https://doi.org/10.11896/jsjkx.210900200 |
[7] | 李浩, 张兰, 杨兵, 杨海潇, 寇勇奇, 王飞, 康雁. 融合双重权重机制和图卷积神经网络的微博细粒度情感分类 Fine-grained Sentiment Classification of Chinese Microblogs Combining Dual Weight Mechanismand Graph Convolutional Neural Network 计算机科学, 2022, 49(3): 246-254. https://doi.org/10.11896/jsjkx.201200073 |
[8] | 苗启广, 辛文天, 刘如意, 谢琨, 王泉, 杨宗凯. 面向智慧教育行为分析的图卷积骨架动作识别方法 Graph Convolutional Skeleton-based Action Recognition Method for Intelligent Behavior Analysis 计算机科学, 2022, 49(2): 156-161. https://doi.org/10.11896/jsjkx.220100061 |
[9] | 张虎, 柏萍. 融入句子中远距离词语依赖的图卷积短文本分类方法 Graph Convolutional Networks with Long-distance Words Dependency in Sentences for Short Text Classification 计算机科学, 2022, 49(2): 279-284. https://doi.org/10.11896/jsjkx.201200062 |
[10] | 张玮琪, 汤轶丰, 李林燕, 胡伏原. 基于场景图的段落生成序列图像方法 Image Stream From Paragraph Method Based on Scene Graph 计算机科学, 2022, 49(1): 233-240. https://doi.org/10.11896/jsjkx.201100207 |
[11] | 梁浩宏, 古天龙, 宾辰忠, 常亮. 联合学习用户端和项目端知识图谱的个性化推荐 Combining User-end and Item-end Knowledge Graph Learning for Personalized Recommendation 计算机科学, 2021, 48(5): 109-116. https://doi.org/10.11896/jsjkx.200600115 |
[12] | 胡昕彤, 沙朝锋, 刘艳君. 基于随机投影和主成分分析的网络嵌入后处理算法 Post-processing Network Embedding Algorithm with Random Projection and Principal Component Analysis 计算机科学, 2021, 48(5): 124-129. https://doi.org/10.11896/jsjkx.200500058 |
[13] | 陈恒, 王维美, 李冠宇, 史一民. 四元数关系旋转的知识图谱补全模型 Knowledge Graph Completion Model Using Quaternion as Relational Rotation 计算机科学, 2021, 48(5): 225-231. https://doi.org/10.11896/jsjkx.200300093 |
[14] | 康雁, 谢思宇, 王飞, 寇勇奇, 徐玉龙, 吴志伟, 李浩. 基于双路信息时空图卷积网络的交通预测模型 Traffic Prediction Model Based on Dual Path Information Spatial-Temporal Graph Convolutional Network 计算机科学, 2021, 48(11A): 46-51. https://doi.org/10.11896/jsjkx.201200184 |
[15] | 高创, 李建华, 季秀怡, 朱程龙, 李诗良, 李洪林. 基于图卷积神经网络的药物靶标作用关系预测方法 Drug Target Interaction Prediction Method Based on Graph Convolutional Neural Network 计算机科学, 2021, 48(10): 127-134. https://doi.org/10.11896/jsjkx.200700068 |
|