基于图卷积神经网络的完全图人脸聚类

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 275-277.doi: 10.11896/jsjkx.201200102

• 图像处理& 多媒体技术 • 上一篇    下一篇

基于图卷积神经网络的完全图人脸聚类

王文博, 罗恒利   

  1. 南京航空航天大学计算机科学与技术学院 南京211106
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 王文博(wangwb.96@nuaa.edu.cn)

Complete Graph Face Clustering Based on Graph Convolution Network

WANG Wen-bo, LUO Heng-li   

  1. School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:WANG Wen-bo,born in 1996,master.His main research interests include face recognition and face clustering.

摘要: 人脸聚类是根据不同身份对人脸图像进行分组的方法,主要用于人脸标注和图像管理等领域。针对现有方法中存在大量冗余数据的问题,文中使用一种基于完全图约束和上下文关系进行链接预测的方法。该聚类算法基于图卷积神经网络进行链接预测,结合完全图约束筛选数据,同时在预测的过程中对链接关系进行不断的更新。实验结果显示,结合完全图约束的人脸聚类方法能够在减少冗余数据、加快运行速度的同时,提升聚类的准确率,从而提高聚类的整体效果。

关键词: 链接预测, 人脸聚类, 图卷积神经网络, 完全图约束

Abstract: Face clustering is a method of grouping face images according to different identities,which is mainly used in the fields of face annotation,image management.etc.There is massive redundant data in existing methods.To handle this issue,this paper uses a link prediction method based on complete graph constraint and context relationship.The clustering algorithm is based on graph convolution network for link prediction,combined with complete graph constraints to filter data,and the link relationship is constantly updated in the process of prediction.Experimental results show that the face clustering method combined with complete graph constraint can reduce redundant data,speed up the operation,and improve the accuracy of clustering.Thus it improves the overall performance of clustering.

Key words: Complete graph constraint, Face clustering, Graph convolution network, Link prediction

中图分类号: 

  • TP391.4
[1]ZHANG Z,LUO P,CHEN C L,et al.Joint face representation adaptation and clustering in videos[C]//European Conference on Computer Vision.Springer,2016:236-251.
[2]SUN Y,WANG X,TANG X.Deep Learning Face Representation by Joint Identification-Verification[C]//Advances in Neural Information Processing Systems.2014:1988-1996.
[3]SUN Y,WANG X,TANG X,et al.Deep Learning Face Representation from Predicting 10 000 Classes[C]//Processing of the IEEE Conference on Computer Vision and Pattern Recognition.2014:1891-1898.
[4]https://github.com/cmusatyalab/openface.
[5]DENG J,GUO J,XU E N,et al.ArcFace:Additive AngularMargin Loss for Deep Face Recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2019.
[6]MACQUEEN J.Some Methods for Classification and Analysis of Multi-Variate Observations[C]//Proc of Berkeley Symposiumon Mathematica lStatistics & Probability.1965.
[7]BIRANT D,KUT A.ST-DBSCAN:An algorithm for clustering spatial-temporal data[J].Data & Knowledge Engineering,2007,60(1):208-221.
[8]SHI Y,OTTO C,JAIN A K.Face clustering:representation and pairwise constraints[J].IEEE Transactions on Information Forensics and Security,2018,13(7):1626-1640.
[9]LIN W,CHEN J,CASTILLO C D,et al.Deep Density Clust-ering of Unconstrained Faces[C]//IEEE/CVF Conference onComputer Vision and Pattern Recognition.2018:8128-8137.
[10]WANG Z D,ZHENG L,LI Y L,et al.Linkage Based Face Clustering via Graph Convolution Network[C]//Processing of the IEEE Conference on Computer Vision and Pattern Recognition.2019:1117-1125.
[11]YANG L,ZHAN X,CHEN D,et al.Learning to Cluster Faces on an Affinity Graph[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:2293-2301.
[12]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J/OL].Machine Learning;Statistics-Machine Learning.2016.https://arxiv.org/abs/1609.02907.
[13]GUO Y,ZHANG L,HU Y,et al.MS-Celeb-1M:A Dataset and Benchmark for Large-Scale Face Recognition[C]//BEuropean Conference on Computer Vision.2016:87-102.
[14]YI D,LEI Z,LIAO S,et al.Learning face representation fromscratch[C]//Processing of the IEEE Conference on Computer Vision and Pattern Recognition.2014.
[15]WHITELAM C,TABORSKY E,BLANTON A,et al.IARPA Janus Benchmark-B Face Dataset[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).IEEE,2017.
[16]AMIG E,GONZALO J,ARTILES J,et al.A comparison of extrinsic clustering evaluation metrics based on formal constraints[J].Information Retrieval,2009,12(5):613.
[1] 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲.
基于无监督集群级的科技论文异质图节点表示学习方法
Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level
计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196
[2] 黄丽, 朱焱, 李春平.
基于异构网络表征学习的作者学术行为预测
Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning
计算机科学, 2022, 49(9): 76-82. https://doi.org/10.11896/jsjkx.210900078
[3] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[4] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[5] 李子仪, 周夏冰, 王中卿, 张民.
基于用户关联的立场检测
Stance Detection Based on User Connection
计算机科学, 2022, 49(5): 221-226. https://doi.org/10.11896/jsjkx.210400135
[6] 高越, 傅湘玲, 欧阳天雄, 陈松龄, 闫晨巍.
基于时空自适应图卷积神经网络的脑电信号情绪识别
EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network
计算机科学, 2022, 49(4): 30-36. https://doi.org/10.11896/jsjkx.210900200
[7] 李浩, 张兰, 杨兵, 杨海潇, 寇勇奇, 王飞, 康雁.
融合双重权重机制和图卷积神经网络的微博细粒度情感分类
Fine-grained Sentiment Classification of Chinese Microblogs Combining Dual Weight Mechanismand Graph Convolutional Neural Network
计算机科学, 2022, 49(3): 246-254. https://doi.org/10.11896/jsjkx.201200073
[8] 苗启广, 辛文天, 刘如意, 谢琨, 王泉, 杨宗凯.
面向智慧教育行为分析的图卷积骨架动作识别方法
Graph Convolutional Skeleton-based Action Recognition Method for Intelligent Behavior Analysis
计算机科学, 2022, 49(2): 156-161. https://doi.org/10.11896/jsjkx.220100061
[9] 张虎, 柏萍.
融入句子中远距离词语依赖的图卷积短文本分类方法
Graph Convolutional Networks with Long-distance Words Dependency in Sentences for Short Text Classification
计算机科学, 2022, 49(2): 279-284. https://doi.org/10.11896/jsjkx.201200062
[10] 张玮琪, 汤轶丰, 李林燕, 胡伏原.
基于场景图的段落生成序列图像方法
Image Stream From Paragraph Method Based on Scene Graph
计算机科学, 2022, 49(1): 233-240. https://doi.org/10.11896/jsjkx.201100207
[11] 梁浩宏, 古天龙, 宾辰忠, 常亮.
联合学习用户端和项目端知识图谱的个性化推荐
Combining User-end and Item-end Knowledge Graph Learning for Personalized Recommendation
计算机科学, 2021, 48(5): 109-116. https://doi.org/10.11896/jsjkx.200600115
[12] 胡昕彤, 沙朝锋, 刘艳君.
基于随机投影和主成分分析的网络嵌入后处理算法
Post-processing Network Embedding Algorithm with Random Projection and Principal Component Analysis
计算机科学, 2021, 48(5): 124-129. https://doi.org/10.11896/jsjkx.200500058
[13] 陈恒, 王维美, 李冠宇, 史一民.
四元数关系旋转的知识图谱补全模型
Knowledge Graph Completion Model Using Quaternion as Relational Rotation
计算机科学, 2021, 48(5): 225-231. https://doi.org/10.11896/jsjkx.200300093
[14] 康雁, 谢思宇, 王飞, 寇勇奇, 徐玉龙, 吴志伟, 李浩.
基于双路信息时空图卷积网络的交通预测模型
Traffic Prediction Model Based on Dual Path Information Spatial-Temporal Graph Convolutional Network
计算机科学, 2021, 48(11A): 46-51. https://doi.org/10.11896/jsjkx.201200184
[15] 高创, 李建华, 季秀怡, 朱程龙, 李诗良, 李洪林.
基于图卷积神经网络的药物靶标作用关系预测方法
Drug Target Interaction Prediction Method Based on Graph Convolutional Neural Network
计算机科学, 2021, 48(10): 127-134. https://doi.org/10.11896/jsjkx.200700068
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!